9 research outputs found
Controlling for Unobserved Confounds in Classification Using Correlational Constraints
As statistical classifiers become integrated into real-world applications, it
is important to consider not only their accuracy but also their robustness to
changes in the data distribution. In this paper, we consider the case where
there is an unobserved confounding variable that influences both the
features and the class variable . When the influence of
changes from training to testing data, we find that the classifier accuracy can
degrade rapidly. In our approach, we assume that we can predict the value of
at training time with some error. The prediction for is then fed to
Pearl's back-door adjustment to build our model. Because of the attenuation
bias caused by measurement error in , standard approaches to controlling for
are ineffective. In response, we propose a method to properly control for
the influence of by first estimating its relationship with the class
variable , then updating predictions for to match that estimated
relationship. By adjusting the influence of , we show that we can build a
model that exceeds competing baselines on accuracy as well as on robustness
over a range of confounding relationships.Comment: 9 page
Causally Regularized Learning with Agnostic Data Selection Bias
Most of previous machine learning algorithms are proposed based on the i.i.d.
hypothesis. However, this ideal assumption is often violated in real
applications, where selection bias may arise between training and testing
process. Moreover, in many scenarios, the testing data is not even available
during the training process, which makes the traditional methods like transfer
learning infeasible due to their need on prior of test distribution. Therefore,
how to address the agnostic selection bias for robust model learning is of
paramount importance for both academic research and real applications. In this
paper, under the assumption that causal relationships among variables are
robust across domains, we incorporate causal technique into predictive modeling
and propose a novel Causally Regularized Logistic Regression (CRLR) algorithm
by jointly optimize global confounder balancing and weighted logistic
regression. Global confounder balancing helps to identify causal features,
whose causal effect on outcome are stable across domains, then performing
logistic regression on those causal features constructs a robust predictive
model against the agnostic bias. To validate the effectiveness of our CRLR
algorithm, we conduct comprehensive experiments on both synthetic and real
world datasets. Experimental results clearly demonstrate that our CRLR
algorithm outperforms the state-of-the-art methods, and the interpretability of
our method can be fully depicted by the feature visualization.Comment: Oral paper of 2018 ACM Multimedia Conference (MM'18
Robust Text Classification in the Presence of Confounding Bias
As text classifiers become increasingly used in real-time applications, it is critical to consider not only their accuracy but also their robustness to changes in the data distribution. In this paper, we consider the case where there is a confounding variable Z that influences both the text features X and the class variable Y. For example, a classifier trained to predict the health status of a user based on their online communications may be confounded by socioeconomic variables. When the influence of Z changes from training to testing data, we find that classifier accuracy can degrade rapidly. Our approach, based on Pearl's back-door adjustment, estimates the underlying effect of a text variable on the class variable while controlling for the confounding variable. Although our goal is prediction, not causal inference, we find that such adjustments are essential to building text classifiers that are robust to confounding variables. On three diverse text classifications tasks, we find that covariate adjustment results in higher accuracy than competing baselines over a range of confounding relationships (e.g., in one setting, accuracy improves from 60% to 81%)
Replication Data for: Controlling for Unobserved Confounds in Classification Using Correlational Constraints
The replication data is stored as a tar archive file. It contains two folders: one for each main experiment described in the paper
Removing Confounds in Text Classification for Computational Social Science
Nowadays, one can use social media and other online platforms to communicate with friends and family, write a review for a product, ask questions about a topic of interest, or even share details of private life with the rest of the world. The ever-increasing amount of user-generated content has provided researchers with data that can offer insights on human behavior. Because of that, the field of computational social science - at the intersection of machine learning and social sciences - has soared in the past years, especially within the field of public health research. However, working with large amounts of user-generated data creates new issues. In this thesis, we propose solutions for two problems encountered in computational social science and related to confounding bias.First, because of the anonymity provided by online forums, social networks, or other blogging platforms through the common usage of usernames, it is hard to get accurate information about users such as gender, age, or ethnicity. Therefore, although collecting data on a specific topic is made easier, conducting an observational study with this type of data is not simple. Indeed, when one wishes to run a study to measure the effect of a variable on another variable, one needs to control for potential confounding variables. In the case of user-generated data, these potential confounding variables are at best noisily observed or inferred and at worst not observed at all. In this work, we wish to provide a way to use these inferred latent attributes in order to conduct an observational study while reducing the effect of confounding bias as much as possible. We first present a simple matching method in a large-scale observational study. Then, we propose a method to retrieve relevant and representative documents through adaptive query building in order to build the treatment and control groups of an observational study.Second, we focus on the problem of controlling for confounding variables when the influence of these variables on the target variable of a classification problem changes over time. Although identifying and controlling for confounding variables has been assiduously studied in empirical social science, it is often neglected in text classification. This can be understood by the fact that, if we assume that the impact of confounding variables does not change between the training and the testing data, then prediction accuracy should only be slightly affected. Yet, this assumption often does not hold when working with user-generated text. Because of this, computational science studies are at risk of reaching false conclusions when based on text classifiers that are not controlling for confounding variables. In this document, we propose to build a classifier that is robust to confounding bias shift, and we show that we can build such a classifier in different situations: when there are one or more observed confounding variables, when there is one noisily predicted confounding variable, or when the confounding variable is unknown but can be detected through topic modeling
Using Matched Samples to Estimate the Effects of Exercise on Mental Health via Twitter
Recent work has demonstrated the value of social media monitoring for health surveillance (e.g., tracking influenza or depression rates). It is an open question whether such data can be used to make causal inferences (e.g., determining which activities lead to increased depression rates). Even in traditional, restricted domains, estimating causal effects from observational data is highly susceptible to confounding bias. In this work, we estimate the effect of exercise on mental health from Twitter, relying on statistical matching methods to reduce confounding bias. We train a text classifier to estimate the volume of a user's tweets expressing anxiety, depression, or anger, then compare two groups: those who exercise regularly (identified by their use of physical activity trackers like Nike+), and a matched control group. We find that those who exercise regularly have significantly fewer tweets expressing depression or anxiety; there is no significant difference in rates of tweets expressing anger. We additionally perform a sensitivity analysis to investigate how the many experimental design choices in such a study impact the final conclusions, including the quality of the classifier and the construction of the control group