37 research outputs found

    The prognostic significance of Cdc6 and Cdt1 in breast cancer

    Get PDF
    DNA replication is a critical step in cell proliferation. Overexpression of MCM2-7 genes correlated with poor prognosis in breast cancer patients. However, the roles of Cdc6 and Cdt1, which work with MCMs to regulate DNA replication, in breast cancers are largely unknown. In the present study, we have shown that the expression levels of Cdc6 and Cdt1 were both significantly correlated with an increasing number of MCM2-7 genes overexpression. Both Cdc6 and Cdt1, when expressed in a high level, alone or in combination, were significantly associated with poorer survival in the breast cancer patient cohort (n = 1441). In line with this finding, the expression of Cdc6 and Cdt1 was upregulated in breast cancer cells compared to normal breast epithelial cells. Expression of Cdc6 and Cdt1 was significantly higher in ER negative breast cancer, and was suppressed when ER signalling was inhibited either by tamoxifen in vitro or letrozole in human subjects. Importantly, breast cancer patients who responded to letrozole expressed significantly lower Cdc6 than those patients who did not respond. Our results suggest that Cdc6 is a potential prognostic marker and therapeutic target in breast cancer patients

    Mechanical Tension Increases CCN2/CTGF Expression and Proliferation in Gingival Fibroblasts via a TGFβ-Dependent Mechanism

    Get PDF
    Unlike skin, oral gingival do not scar in response to tissue injury. Fibroblasts, the cell type responsible for connective tissue repair and scarring, are exposed to mechanical tension during normal and pathological conditions including wound healing and fibrogenesis. Understanding how human gingival fibroblasts respond to mechanical tension is likely to yield valuable insights not only into gingival function but also into the molecular basis of scarless repair. CCN2/connective tissue growth factor is potently induced in fibroblasts during tissue repair and fibrogenesis. We subjected gingival fibroblasts to cyclical strain (up to 72 hours) using the Flexercell system and showed that CCN2 mRNA and protein was induced by strain. Strain caused the rapid activation of latent TGFβ, in a fashion that was reduced by blebbistatin and FAK/src inhibition, and the induction of endothelin (ET-1) mRNA and protein expression. Strain did not cause induction of α-smooth muscle actin or collagen type I mRNAs (proteins promoting scarring); but induced a cohort of pro-proliferative mRNAs and cell proliferation. Compared to dermal fibroblasts, gingival fibroblasts showed reduced ability to respond to TGFβ by inducing fibrogenic mRNAs; addition of ET-1 rescued this phenotype. Pharmacological inhibition of the TGFβ type I (ALK5) receptor, the endothelin A/B receptors and FAK/src significantly reduced the induction of CCN2 and pro-proliferative mRNAs and cell proliferation. Controlling TGFβ, ET-1 and FAK/src activity may be useful in controlling responses to mechanical strain in the gingiva and may be of value in controlling fibroproliferative conditions such as gingival hyperplasia; controlling ET-1 may be of benefit in controlling scarring in response to injury in the skin

    Cdk2 Is Required for p53-Independent G2/M Checkpoint Control

    Get PDF
    The activation of phase-specific cyclin-dependent kinases (Cdks) is associated with ordered cell cycle transitions. Among the mammalian Cdks, only Cdk1 is essential for somatic cell proliferation. Cdk1 can apparently substitute for Cdk2, Cdk4, and Cdk6, which are individually dispensable in mice. It is unclear if all functions of non-essential Cdks are fully redundant with Cdk1. Using a genetic approach, we show that Cdk2, the S-phase Cdk, uniquely controls the G2/M checkpoint that prevents cells with damaged DNA from initiating mitosis. CDK2-nullizygous human cells exposed to ionizing radiation failed to exclude Cdk1 from the nucleus and exhibited a marked defect in G2/M arrest that was unmasked by the disruption of P53. The DNA replication licensing protein Cdc6, which is normally stabilized by Cdk2, was physically associated with the checkpoint regulator ATR and was required for efficient ATR-Chk1-Cdc25A signaling. These findings demonstrate that Cdk2 maintains a balance of S-phase regulatory proteins and thereby coordinates subsequent p53-independent G2/M checkpoint activation

    PI3Kδ and primary immunodeficiencies.

    Get PDF
    Primary immunodeficiencies are inherited disorders of the immune system, often caused by the mutation of genes required for lymphocyte development and activation. Recently, several studies have identified gain-of-function mutations in the phosphoinositide 3-kinase (PI3K) genes PIK3CD (which encodes p110δ) and PIK3R1 (which encodes p85α) that cause a combined immunodeficiency syndrome, referred to as activated PI3Kδ syndrome (APDS; also known as p110δ-activating mutation causing senescent T cells, lymphadenopathy and immunodeficiency (PASLI)). Paradoxically, both loss-of-function and gain-of-function mutations that affect these genes lead to immunosuppression, albeit via different mechanisms. Here, we review the roles of PI3Kδ in adaptive immunity, describe the clinical manifestations and mechanisms of disease in APDS and highlight new insights into PI3Kδ gleaned from these patients, as well as implications of these findings for clinical therapy

    Activation of the PTEN substrate PI3K contributes to tumour generation and autoimmunity

    No full text

    Compound heterozygosity for Pten and SHIP augments T-dependent humoral immune responses and cytokine production by CD4(+) T cells

    No full text
    Tight regulation of the phosphatidylinositiol 3-kinase (PI3K) pathway is essential not only for normal immune system development and responsiveness, but also in the prevention of immunopathology. Indeed, unchecked activation of the PI3K pathway in T cells induces lymphoproliferation and systemic autoimmunity. Evaluating the importance of threshold levels of two key PI3K pathway phosphoinositol phosphatases, we previously reported that mice heterozygous for both Pten and SHIP develop a more rapid progression of a lymphoproliferative autoimmune syndrome than do Pten(+\−) mice. Investigating the basis for this difference, we now describe a quantitative and qualitative difference in the antibody responses of C57BL\6 Pten(+\−) SHIP(+\−) mice upon challenge with a T-dependent antigen. Suspecting that this phenotypic difference might be the result, at least in part, of a T-helper cell defect, an in vitro analysis of anti-CD3/interleukin (IL)-2-expanded CD4(+) T cells was performed. After stimulation with anti-CD3, cells from mice heterozygous for both Pten and SHIP exhibited a striking increase in IL-4 secretion (> 10-fold), without a corresponding increase in T helper 2 (Th2) cell numbers being evident by intracellular staining for this cytokine. Modest increases were also seen for both IL-13 and IFN-γ. Perhaps in keeping with this abnormal in vitro cytokine profile, IgG1 serum levels were significantly elevated in young C57BL\6 Pten(+\−) SHIP(+\−) mice. Thus, the relative levels of Pten and SHIP appear to be key variables in CD4(+) T-cell function, primarily via their ability to regulate IL-4 production
    corecore