15 research outputs found

    Methodological shortcomings of wrist-worn heart rate monitors validations

    Get PDF
    Wearable sensor technology could have an important role for clinical research and in delivering health care. Accordingly, such technology should undergo rigorous evaluation prior to market launch, and its performance should be supported by evidence-based marketing claims. Many studies have been published attempting to validate wrist-worn photoplethysmography (PPG)-based heart rate monitoring devices, but their contrasting results question the utility of this technology. The reason why many validations did not provide conclusive evidence of the validity of wrist-worn PPG-based heart rate monitoring devices is mostly methodological. The validation strategy should consider the nature of data provided by both the investigational and reference devices. There should be uniformity in the statistical approach to the analyses employed in these validation studies. The investigators should test the technology in the population of interest and in a setting appropriate for intended use. Device industries and the scientific community require robust standards for the validation of new wearable sensor technology

    Methodological Shortcomings of Wrist-Worn Heart Rate Monitors Validations

    No full text
    Wearable sensor technology could have an important role for clinical research and in delivering health care. Accordingly, such technology should undergo rigorous evaluation prior to market launch, and its performance should be supported by evidence-based marketing claims. Many studies have been published attempting to validate wrist-worn photoplethysmography (PPG)-based heart rate monitoring devices, but their contrasting results question the utility of this technology. The reason why many validations did not provide conclusive evidence of the validity of wrist-worn PPG-based heart rate monitoring devices is mostly methodological. The validation strategy should consider the nature of data provided by both the investigational and reference devices. There should be uniformity in the statistical approach to the analyses employed in these validation studies. The investigators should test the technology in the population of interest and in a setting appropriate for intended use. Device industries and the scientific community require robust standards for the validation of new wearable sensor technology

    Evaluation of an activity monitor for use in pregnancy to help reduce excessive gestational weight gain

    No full text
    \u3cp\u3eBackground: Excessive weight gain during pregnancy increases the risk for negative effects on mother and child during pregnancy, delivery, and also postnatally. Excessive weight gain can be partially compensated by being sufficiently physically active, which can be measured using activity trackers. Modern activity trackers often use accelerometer data as well as heart rate data to estimate energy expenditure. Because pregnancy affects the metabolism and cardiac output, it is not evident that activity trackers that are calibrated to the general population can be reliably used during pregnancy. We evaluated whether an activity monitor designed for the general population is sufficiently accurate for estimating energy expenditure in pregnant women. Methods: Forty pregnant women (age: 30.8 ± 4.7 years, BMI: 25.0 ± 4.0) from all three trimesters performed a 1-h protocol including paced and self-paced exercise activities as well as household activities. We tracked reference energy expenditure using indirect calorimetry and used equivalence testing to determine whether the estimated energy expenditure from the activity monitor was within the limits of equivalence. Results: Overall we found an averaged underestimation of 10 kcal (estimated energy expenditure was 97% of the reference measurement). The 90% CI for the cumulative total energy expenditure was 94-100%. The activities of self-paced cycling, household activities, stair-walking, and yoga had one of their equivalence boundaries outside a 80-125% range of equivalence; for exercise on a cross-trainer, for self-paced and fixed-pace walking, fixed-paced cycling, and resting, the estimations were within the limits of equivalence. Conclusions: We conclude that the activity monitor is sufficiently accurate for every-day use during pregnancy. The observed deviations can be accounted for and are acceptable from a statistical and an applied perspective because the positive and negative deviations that we observed cancel out to an accurate average energy expenditure over a day, and estimations during exercise are sufficiently accurate to enable coaching on physical activity. The positive and negative deviations themselves were relatively small. Therefore, the activity monitor can be used to help in preventing excessive weight gain during pregnancy by accurately tracking physical activity.\u3c/p\u3

    Influence of dilated cardiomyopathy and a left ventricular assist device on vortex dynamics in the left ventricle

    No full text
    Together with new developments in mechanical cardiac support, the analysis of vortex dynamics in the left ventricle has become an increasingly important topic in literature. The aim of this study was to develop a method to investigate the influence of a left ventricular assist device (LVAD) on vortex dynamics in a failing ventricle. An axisymmetric fluid dynamics model of the left ventricle was developed and coupled to a lumped parameter model of the circulation. Simulations were performed for healthy conditions and dilated cardiomyopathy(DCM). Vortex structures in these simulations were analyzed by means of automated detection. Results show that the strength of the leading vortex ring is lower in a DCM ventricle than in a healthy ventricle. The LVAD further influences the maximum strength of the vortex and also causes the vortex to disappear earlier in time with increasing LVAD flows. Understanding these phenomena by means of the method proposed in this study will contribute to enhanced diagnostics and monitoring during cardiac support

    The role of pressurized fluid in subchondral bone cyst growth

    No full text
    Pressurized fluid has been proposed to play an important role in subchondral bone cyst development. However, the exact mechanism remains speculative. We used an established computational mechanoregulated bone adaptation model to investigate two hypotheses: 1) pressurized fluid causes cyst growth through altered bone tissue loading conditions, 2) pressurized fluid causes cyst growth through osteocyte death. In a 2D finite element model of bone microarchitecture, a marrow cavity was filled with fluid to resemble a cyst. Subsequently, the fluid was pressurized, or osteocyte death was simulated, or both. Rather than increasing the load, which was the prevailing hypothesis, pressurized fluid decreased the load on the surrounding bone, thereby leading to net bone resorption and growth of the cavity. In this scenario an irregularly shaped cavity developed which became rounded and obtained a rim of sclerotic bone after removal of the pressurized fluid. This indicates that cyst development may occur in a step-wise manner. In the simulations of osteocyte death, cavity growth also occurred, and the cavity immediately obtained a rounded shape and a sclerotic rim. Combining both mechanisms increased the growth rate of the cavity. In conclusion, both stress-shielding by pressurized fluid, and osteocyte death may cause cyst growth. In vivo observations of pressurized cyst fluid, dead osteocytes, and different appearances of cysts similar to our simulation results support the idea that both mechanisms can simultaneously play a role in the development and growth of subchondral bone cysts
    corecore