29 research outputs found

    An Oscillatory Contractile Pole-Force Component Dominates the Traction Forces Exerted by Migrating Amoeboid Cells

    Get PDF
    We used principal component analysis to dissect the mechanics of chemotaxis of amoeboid cells into a reduced set of dominant components of cellular traction forces and shape changes. The dominant traction force component in wild-type cells accounted for ~40% of the mechanical work performed by these cells, and consisted of the cell attaching at front and back contracting the substrate towards its centroid (pole-force). The time evolution of this pole-force component was responsible for the periodic variations of cell length and strain energy that the cells underwent during migration. We identified four additional canonical components, reproducible from cell to cell, overall accounting for an additional ~20% of mechanical work, and associated with events such as lateral protrusion of pseudopodia. We analyzed mutant strains with contractility defects to quantify the role that non-muscle Myosin II (MyoII) plays in amoeboid motility. In MyoII essential light chain null cells the polar-force component remained dominant. On the other hand, MyoII heavy chain null cells exhibited a different dominant traction force component, with a marked increase in lateral contractile forces, suggesting that cortical contractility and/or enhanced lateral adhesions are important for motility in this cell line. By compressing the mechanics of chemotaxing cells into a reduced set of temporally-resolved degrees of freedom, the present study may contribute to refined models of cell migration that incorporate cell-substrate interactions

    Understanding of micro-alloying on plasticity in Cu46Zr47-xAl7Dyx (0≤ x ≤ 8) bulk metallic glasses under compression: Based on mechanical relaxations and theoretical analysis

    No full text
    cited By 22International audienceLacking of plasticity at ambient temperature severely hinders the wide applications of bulk metallic glasses, and a significant challenge is to improve the plasticity. Based on the metallurgical physics, micro-alloying can be applied to adjust metallic glasses plasticity. In the current work, dynamic mechanical relaxation of Cu46Zr47-xAl7Dyx (0 ≤ x ≤ 8) bulk metallic glasses has been investigated experimentally by dynamic mechanical analysis. Compressive tests have been performed to investigate mechanical properties of the Cu-based bulk metallic glasses at both ambient as well as cryogenic temperatures. The results indicated that by modifying the chemical composition, plastic deformation and dynamic mechanical relaxation processes are changed. The influence of Dysprosium (Dy) on plastic deformation is possibly related to the Johari-Goldstein (JG) relaxation in the metallic glasses. A kinetic model which may be predict the mechanical relaxation behavior and atomic mobility of the metallic glasses. In addition, experimental analyses show that thermal properties can be affected by the Dy addition of the Cu-based bulk metallic glasses. Our investigations demonstrated that micro-alloying of Dy could play an important role to influence the Cu46Zr47-xAl7Dyx bulk metallic glasses plasticity. In order to explain this behavior, the quasi-point defects theory was used to describe the microstructural heterogeneity. We postulate that the compressive plasticity is directly associated with local heterogeneity and relaxation modes for metallic glasses. © 2016 Elsevier Ltd. All rights reserved

    Contact analyses for bodies with frictional heating and plastic behavior

    No full text
    International audienc
    corecore