522 research outputs found

    Bauernhofeffekt und Bio-Milchkonsum vor dem Hintergrund des Grundprinzips Gesundheit in der Ökologischen Landwirtschaft

    Get PDF
    The farm effect, reported in more than 40 studies, is associated with the more wellknown hygiene hypothesis. In particular the early consumption of untreated milk in a human's life may, besides genetic predisposition, impact the immune system of children and may prevent atopic diseases in their whole lifespan. Due to the special role of untreated milk, the question was answered, which milk causes a remarkable farm effect. There is evidence for differences between effects of treatment degrees of milk as well as its organic and conventional origin. These findings were evaluated before the background of organic agriculture by comprehensively reviewing existing interdisciplinary literature including medicinal studies and by conducting an expert interview. In consequence traditional lifestyle habits such as farm visits by children and organic milk consumption should be implemented in future preventive approaches, particularly because health has always been eminent in the principles of the organic agricultural movement

    Comparisons of atmospheric data and reduction methods for the analysis of satellite gravimetry observations

    Get PDF
    [1] The Gravity Recovery and Climate Experiment (GRACE) derived gravity solutions contain errors mostly due to instrument noise, anisotropic spatial sampling, and temporal aliasing. Improving the quality of satellite gravimetry observations, in terms of using more sensitive sensors and/or increasing the spatial isotropy, has been discussed in the context of the designed scenarios of future satellite gravimetry missions. Temporal aliasing caused by incomplete reducing of background models, however, is still a factor that affects the quality of the gravity field solutions. This paper specifically explores the possible physical, geometrical, and numerical modifications of the three‒dimensional (3‒D) integration approach to eliminate the high‒frequency atmospheric effects from satellite gravimetry observations. The new modified 3‒D approach is then applied to compute new sets of atmospheric dealiasing products, using atmospheric fields from the European Centre for Medium‒Range Weather Forecasts (ECMWF) operational analysis model and ERA‒Interim reanalysis. Impacts of modifications are compared to the prelaunch baseline and the current error‒curve of GRACE as well as an error‒curve of a Bender‒type multiorbit satellite configuration. Specifically, we found that using latitude‒dependent radius, latitude‒ and altitude‒dependent gravity accelerations along with numerical modifications have a considerable impact on the 3‒D integral. Comparing the new products to those of GRACE Atmosphere and Ocean Dealiasing level‒1B shows a nonnegligible difference with respect to the prelaunch baseline of GRACE and a possible Bender‒type mission up to harmonic degrees 13 and 50, respectively. A big difference is also found between the derived dealiasing products from ECMWF operational analysis and ERA‒Interim indicating the importance of input parameters on the final atmospheric dealiasing products

    Comparisons of atmospheric mass variations derived from ECMWF reanalysis and operational fields, over 2003 to 2011

    Get PDF
    There are two spurious jumps in the atmospheric part of the Gravity Recovery and Climate Experiment-Atmosphere and Ocean De-aliasing level 1B (GRACE-AOD1B) products, which occurred in January-February of the years 2006 and 2010, as a result of the vertical level and horizontal resolution changes in the ECMWFop (European Centre for Medium-Range Weather Forecasts operational analysis). These jumps cause a systematic error in the estimation of mass changes from GRACE time-variable level 2 products, since GRACE-AOD1B mass variations are removed during the computation of GRACE level 2. In this short note, the potential impact of using an improved set of 6-hourly atmospheric de-aliasing products on the computations of linear trends as well as the amplitude of annual and semi-annual mass changes from GRACE is assessed. These improvements result from 1) employing a modified 3D integration approach (ITG3D), and 2) using long-term consistent atmospheric fields from the ECMWF reanalysis (ERA-Interim). The monthly averages of the new ITG3D-ERA-Interim de-aliasing products are then compared to the atmospheric part of GRACE-AOD1B, covering January 2003 to December 2010. These comparisons include the 33 world largest river basins along with Greenland and Antarctica ice sheets. The results indicate a considerable difference in total atmospheric mass derived from the two products over some of the mentioned regions. We suggest that future GRACE studies consider these through updating uncertainty budgets or by applying corrections to estimated trends and amplitudes/phases

    Independent patterns of water mass anomalies over Australia from satellite data and models.

    Get PDF
    The Gravity Recovery and Climate Experiment (GRACE) products allow the quantification of total water storage (TWS) changes at global to regional scales. However, the quantity measured by GRACE represents mass signals integrated over vertical columns, requiring their separation into their original sources. Such a separation is vital for Australia, for which GRACE estimates are affected by leakage from the surrounding oceans. The independent component analysis (ICA) method that uses higher-order statistics, is implemented here to separate GRACE-derived water storage signals over the Australian continent from its surrounding oceans, covering from October 2002 to May 2011. The performance of ICA applied to GRACE is then compared to the ICA of WaterGAP Global Hydrology Model (WGHM) and the ICA of the Australian Water Resources Assessment (AWRA) system. To study the influence of rainfall variability on the derived independent patterns, use is made of Tropical Rainfall Measuring Mission (TRMM) data set, from January 2000 to May 2011. Implementing ICA on GRACE-TWS showed a remarkable improvement in separating the continental hydrological signals from the surrounding oceanic anomalies, which was not achievable using a conventional principle component analysis. Reconstructing the continental TWS changes using only those independent components of GRACE that were located over the continent showed a high correlation with WGHM-TWS and AWRA-TWS. Mass concentrations over the oceans and particularly S2 semi-diurnal aliased pattern were separated as independent modes.Correlation analysis between the independent components of GRACE and climate teleconnections showed that the mass anomalies over the northern ocean, Gulf of Carpentaria and north-eastern parts of Australia were significantly correlated with the El Niño-Southern Oscillation, while those over south and south-eastern parts of Australia were mainly linked to the Indian Ocean Dipole

    Surface structure in simple liquid metals. An orbital free first principles study

    Full text link
    Molecular dynamics simulations of the liquid-vapour interfaces in simple sp-bonded liquid metals have been performed using first principles methods. Results are presented for liquid Li, Na, K, Rb, Cs, Mg, Ba, Al, Tl, and Si at thermodynamic conditions near their respective triple points, for samples of 2000 particles in a slab geometry. The longitudinal ionic density profiles exhibit a pronounced stratification extending several atomic diameters into the bulk, which is a feature already experimentally observed in liquid K, Ga, In, Sn and Hg. The wavelength of the ionic oscillations shows a good scaling with the radii of the associated Wigner-Seitz spheres. The structural rearrangements at the interface are analyzed in terms of the transverse pair correlation function, the coordination number and the bond-angle distribution between nearest neighbors. The valence electronic density profile also shows (weaker) oscillations whose phase, with respect to those of the ionic profile, changes from opposite phase in the alkalis to almost in-phase for Si.Comment: 16 pages, 18 figures, 5 tables. Submitted to Phys. Rev.

    Water storage changes and climate variability within the Nile Basin between 2002-2011

    Get PDF
    Understanding water storage changes within the Nile’s main sub-basins and the related impacts of climate variability is an essential step in managing its water resources. The Gravity Recovery And Climate Experiment (GRACE) satellite mission provides a unique opportunity to monitor changes in total water storage (TWS) of large river basins such as the Nile. Use of GRACE-TWS changes for monitoring the Nile is, however, difficult since stronger TWS signals over the Lake Victoria Basin (LVB) and the Red Sea obscure those from smaller sub-basins making their analysis difficult to undertake. To mitigate this problem, this study employed Independent Component Analysis (ICA) to extract statistically independent TWS patterns over the sub-basins from GRACE and the Global Land Data Assimilation System (GLDAS) model. Monthly precipitation from the Tropical Rainfall Measuring Mission (TRMM) over the entire Nile Basin are also analysed by ICA. Such extraction enables an in-depth analysis of water storage changes within each sub-basin and provides a tool for assessing the influence of anthropogenic as well as climate variability caused by large scale ocean–atmosphere interactions such as the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD).Our results indicate that LVB experienced effects of both anthropogenic and climate variability (i.e., a correlation of 0.56 between TWS changes and IOD at 95% confidence level) during the study period 2002–2011, with a sharp drop in rainfall between November and December 2010, the lowest during the entire study period, and coinciding with the drought that affected the Greater Horn of Africa. Ethiopian Highlands (EH) generally exhibited a declining trend in the annual rainfall over the study period, which worsened during 2007–2010, possibly contributing to the 2011 drought over GHA. A correlation of 0.56 was found between ENSO and TWS changes over EH indicating ENSO’s dominant influence. TWS changes over Bar-el-Ghazal experienced mixed increase–decrease, with ENSO being the dominant climate variability in the region during the study period. A remarkable signal is noticed over the Lake Nasser region indicating the possibility of the region losing water not only through evaporation, but also possibly through over extraction from wells in the Western Plateau (Nubian aquifer)

    Updating ESA's Earth System Model for Gravity Mission Simulation Studies: 3. A Realistically Perturbed Non-Tidal Atmosphere and Ocean De-Aliasing Model

    Get PDF
    The ability of any satellite gravity mission concept to monitor mass transport processes in the Earth system is typically tested well ahead of its implementation by means of various simulation studies. Those studies often extend from the simulation of realistic orbits and instrumental data all the way down to the retrieval of global gravity field solution time-series. Basic requirement for all these simulations are realistic representations of the spatio-temporal mass variability in the different sub-systems of the Earth, as a source model for the orbit computations. For such simulations, a suitable source model is required to represent (i) high-frequency (i.e., sub-daily to weekly) mass variability in the atmosphere and oceans, in order to realistically include the effects of temporal aliasing due to non-tidal high-frequency mass variability into the retrieved gravity fields. In parallel, (ii) low-frequency (i.e., monthly to interannual) variability needs to be modelled with realistic amplitudes, particularly at small spatial scales, in order to assess to what extent a new mission concept might provide further insight into physical processes currently not observable. The new source model documented here attempts to fulfil both requirements: Based on ECMWF’s recent atmospheric reanalysis ERA-Interim and corresponding simulations from numerical models of the other Earth system components, it offers spherical harmonic coefficients of the time-variable global gravity field due to mass variability in atmosphere, oceans, the terrestrial hydrosphere including the ice-sheets and glaciers, as well as the solid Earth. Simulated features range from sub-daily to multiyear periods with a spatial resolution of spherical harmonics degree and order 180 over a period of 12 years. In addition to the source model, a de-aliasing model for atmospheric and oceanic high-frequency variability with augmented systematic and random noise is required for a realistic simulation of the gravity field retrieval process, whose necessary error characteristics are discussed. The documentation is organized as follows: The characteristics of the updated ESM along with some basic validation are presented in Volume 1 of this report (Dobslaw et al., 2014). A detailed comparison to the original ESA ESM (Gruber et al., 2011) is provided in Volume 2 (Bergmann-Wolf et al., 2014), while Volume 3 (Forootan et al., 2014) contains a description of the strategy to derive a realistically noisy de-aliasing model for the high-frequency mass variability in atmosphere and oceans. The files of the updated ESA Earth System Model for gravity mission simulation studies are accessible at DOI:10.5880/GFZ.1.3.2014.001

    Quaternary structure of the European spiny lobster (Palinurus elephas) 1 x 6-mer hemocyanin from cryoEM and amino acid sequence data

    No full text
    Arthropod hemocyanins are large respiratory proteins that are composed of up to 48 subunits (8 x 6-mer) in the 75 kDa range. A 3D reconstruction of the 1 x 6-mer hemocyanin from the European spiny lobster Palinuris elephas has been performed from 9970 single particles using cryoelectron microscopy. An 8 Angstrom resolution of the hemocyanin 3D reconstruction has been obtained from about 600 final class averages. Visualisation of structural elements such as a-helices has been achieved. An amino acid sequence alignment shows the high sequence identity (>80%.) of the hemocyanin subunits from the European spiny lobster P. elephas and the American spiny lobster Panulirus interruptus. Comparison of the P. elephas hemocyanin electron microscopy (EM) density map with the known P. interruptus X-ray structure shows a close structural correlation, demonstrating the reliability of both methods for reconstructing proteins, By molecular modelling, we have found the putative locations for the amino acid sequence (597-605) and the C-terminal end (654-657), which are absent in the available P. interruptus X-ray data. (C) 2002 Elsevier Science Ltd. All rights reserve

    Comparison of accelerometer data calibration methods used in thermospheric neutral density estimation

    Get PDF
    Ultra-sensitive space-borne accelerometers on board of low Earth orbit (LEO) satellites are used to measure non-gravitational forces acting on the surface of these satellites. These forces consist of the Earth radiation pressure, the solar radiation pressure and the atmospheric drag, where the first two are caused by the radiation emitted from the Earth and the Sun, respectively, and the latter is related to the thermospheric density. On-board accelerometer measurements contain systematic errors, which need to be mitigated by applying a calibration before their use in gravity recovery or thermospheric neutral density estimations. Therefore, we improve, apply and compare three calibration procedures: (1) a multi-step numerical estimation approach, which is based on the numerical differentiation of the kinematic orbits of LEO satellites; (2) a calibration of accelerometer observations within the dynamic precise orbit determination procedure and (3) a comparison of observed to modeled forces acting on the surface of LEO satellites. Here, accelerometer measurements obtained by the Gravity Recovery And Climate Experiment (GRACE) are used. Time series of bias and scale factor derived from the three calibration procedures are found to be different in timescales of a few days to months. Results are more similar (statistically significant) when considering longer timescales, from which the results of approach (1) and (2) show better agreement to those of approach (3) during medium and high solar activity. Calibrated accelerometer observations are then applied to estimate thermospheric neutral densities. Differences between accelerometer-based density estimations and those from empirical neutral density models, e.g., NRLMSISE-00, are observed to be significant during quiet periods, on average 22 % of the simulated densities (during low solar activity), and up to 28 % during high solar activity. Therefore, daily corrections are estimated for neutral densities derived from NRLMSISE-00. Our results indicate that these corrections improve model-based density simulations in order to provide density estimates at locations outside the vicinity of the GRACE satellites, in particular during the period of high solar/magnetic activity, e.g., during the St. Patrick's Day storm on 17 March 2015

    Plasticity of the C15-CaAl2 Laves phase at room temperature

    Get PDF
    Magnesium is a promising material for light-weight applications but its application is strongly limited because of its low room temperature ductility and low creep resistance. By alloying with Al and Ca, the cubic CaAl2-, the hexagonal CaMg2- and the Ca(Mg,Al)2- Laves phases form, which positively influence these properties. Due to their complex packing, the macroscopic deformation of these phases at low homologous temperatures is strongly limited. In order to overcome this restriction and to study their mechanical properties and mechanisms of plasticity, nanomechanical testing, such as nanoindentation and micropillar compression were applied by the authors. Please click Download on the upper right corner to see the full abstract
    • …
    corecore