132,778 research outputs found

    Purging of untrustworthy recommendations from a grid

    Full text link
    In grid computing, trust has massive significance. There is lot of research to propose various models in providing trusted resource sharing mechanisms. The trust is a belief or perception that various researchers have tried to correlate with some computational model. Trust on any entity can be direct or indirect. Direct trust is the impact of either first impression over the entity or acquired during some direct interaction. Indirect trust is the trust may be due to either reputation gained or recommendations received from various recommenders of a particular domain in a grid or any other domain outside that grid or outside that grid itself. Unfortunately, malicious indirect trust leads to the misuse of valuable resources of the grid. This paper proposes the mechanism of identifying and purging the untrustworthy recommendations in the grid environment. Through the obtained results, we show the way of purging of untrustworthy entities.Comment: 8 pages, 4 figures, 1 table published by IJNGN journal; International Journal of Next-Generation Networks (IJNGN) Vol.3, No.4, December 201

    Alias-free, real coefficient m-band QMF banks for arbitrary m

    Get PDF
    Based on a generalized framework for alias free QMF banks, a theory is developed for the design of uniform QMF banks with real-coefficient analysis filters, such that aliasing can be completely canceled by appropriate choice of real-coefficient synthesis filters. These results are then applied for the derivation of closed-form expressions for the synthesis filters (both FIR and IIR), that ensure cancelation of aliasing for a given set of analysis filters. The results do not involve the inversion of the alias-component (AC) matrix

    PEER-REVIEWING, FEEDBACK & ASSESSMENT IN ENGINEERING TEACHING

    Get PDF
    Presentatio

    Theory and design of uniform DFT, parallel, quadrature mirror filter banks

    Get PDF
    In this paper, the theory of uniform DFT, parallel, quadrature mirror filter (QMF) banks is developed. The QMF equations, i.e., equations that need to be satisfied for exact reconstruction of the input signal, are derived. The concept of decimated filters is introduced, and structures for both analysis and synthesis banks are derived using this concept. The QMF equations, as well as closed-form expressions for the synthesis filters needed for exact reconstruction of the input signalx(n), are also derived using this concept. In general, the reconstructed. signalhat{x}(n)suffers from three errors: aliasing, amplitude distortion, and phase distortion. Conditions for exact reconstruction (i.e., all three distortions are zero, andhat{x}(n)is equal to a delayed version ofx(n))of the input signal are derived in terms of the decimated filters. Aliasing distortion can always be completely canceled. Once aliasing is canceled, it is possible to completely eliminate amplitude distortion (if suitable IIR filters are employed) and completely eliminate phase distortion (if suitable FIR filters are employed). However, complete elimination of all three errors is possible only with some simple, pathalogical stable filter transfer functions. In general, once aliasing is canceled, the other distortions can be minimized rather than completely eliminated. Algorithms for this are presented. The properties of FIR filter banks are then investigated. Several aspects of IIR filter banks are also studied using the same framework

    Codes With Hierarchical Locality

    Full text link
    In this paper, we study the notion of {\em codes with hierarchical locality} that is identified as another approach to local recovery from multiple erasures. The well-known class of {\em codes with locality} is said to possess hierarchical locality with a single level. In a {\em code with two-level hierarchical locality}, every symbol is protected by an inner-most local code, and another middle-level code of larger dimension containing the local code. We first consider codes with two levels of hierarchical locality, derive an upper bound on the minimum distance, and provide optimal code constructions of low field-size under certain parameter sets. Subsequently, we generalize both the bound and the constructions to hierarchical locality of arbitrary levels.Comment: 12 pages, submitted to ISIT 201

    An Alternate Construction of an Access-Optimal Regenerating Code with Optimal Sub-Packetization Level

    Full text link
    Given the scale of today's distributed storage systems, the failure of an individual node is a common phenomenon. Various metrics have been proposed to measure the efficacy of the repair of a failed node, such as the amount of data download needed to repair (also known as the repair bandwidth), the amount of data accessed at the helper nodes, and the number of helper nodes contacted. Clearly, the amount of data accessed can never be smaller than the repair bandwidth. In the case of a help-by-transfer code, the amount of data accessed is equal to the repair bandwidth. It follows that a help-by-transfer code possessing optimal repair bandwidth is access optimal. The focus of the present paper is on help-by-transfer codes that employ minimum possible bandwidth to repair the systematic nodes and are thus access optimal for the repair of a systematic node. The zigzag construction by Tamo et al. in which both systematic and parity nodes are repaired is access optimal. But the sub-packetization level required is rkr^k where rr is the number of parities and kk is the number of systematic nodes. To date, the best known achievable sub-packetization level for access-optimal codes is rk/rr^{k/r} in a MISER-code-based construction by Cadambe et al. in which only the systematic nodes are repaired and where the location of symbols transmitted by a helper node depends only on the failed node and is the same for all helper nodes. Under this set-up, it turns out that this sub-packetization level cannot be improved upon. In the present paper, we present an alternate construction under the same setup, of an access-optimal code repairing systematic nodes, that is inspired by the zigzag code construction and that also achieves a sub-packetization level of rk/rr^{k/r}.Comment: To appear in National Conference on Communications 201
    corecore