30 research outputs found

    The cell wall-associated kinases, WAKs, as pectin receptors

    Get PDF
    The wall-associated kinases, WAKs, are encoded by five highly similar genes clustered in a 30-kb locus in Arabidopsis. These receptor-like proteins contain a cytoplasmic serine threonine kinase, a transmembrane domain, and a less conserved region that is bound to the cell wall and contains a series of epidermal growth factor repeats. Evidence is emerging that WAKs serve as pectin receptors, for both short oligogalacturonic acid fragments generated during pathogen exposure or wounding, and for longer pectins resident in native cell walls. This ability to bind and respond to several types of pectins correlates with a demonstrated role for WAKs in both the pathogen response and cell expansion during plant development

    Cell wall-associated kinases and pectin perception

    Get PDF
    The pectin matrix of the angiosperm cell wall is regulated in both synthesis and modification and greatly influences the direction and extent of cell growth. Pathogens, herbivory and mechanical stresses all influence this pectin matrix and consequently plant form and function. The cell wall-associated kinases (WAKs) bind to pectin and regulate cell expansion or stress responses depending upon the state of the pectin. This review explores the WAKs in the context of cell wall biology and signal transduction pathways

    The state of cell wall pectin monitored by wall associated kinases: A model

    Get PDF
    The Wall Associated Kinases (WAKs) bind to both cross-linked polymers of pectin in the plant cell wall, but have a higher affinity for smaller fragmented pectins that are generated upon pathogen attack or wounding. WAKs are required for cell expansion during normal seedling development and this involves pectin binding and a signal transduction pathway involving MPK3 and invertase induction. Alternatively WAKs bind pathogen generated pectin fragments to activate a distinct MPK6 dependent stress response. Evidence is provided for a model for how newly generated pectin fragments compete for longer pectins to alter the WAK dependent responses

    Hydrophobic core but not amino-terminal charged residues are required for translocation of an integral thylakoid membrane protein in vivo

    Get PDF
    The integral membrane protein cytochrome f contains an amino-terminal signal sequence that is required for translocation into the thylakoid membrane. The signal sequence contains a hydrophobic core neighbored by an amino-terminal charged residue. Mutations that introduce charged amino acids into the hydrophobic core are inhibitory to cytochrome f translocation, and thus render cells non-photosynthetic. We have isolated both nuclear and chloroplast suppressors of these mutations by selecting for restoration of photosynthetic growth of Chlamydomonas. Here we describe the characterization of two chloroplast, second site suppressor mutations. Both suppressors remove the positively charged amino acid that borders the amino terminus of the hydrophobic core, and replace this arginine with either a cysteine or a leucine. The existence of these suppressors suggests that the hydrophobic core can be shifted in position within the signal sequence, and analysis of triple mutants in the signal confirms this hypothesis. Thus this signal that mediates translocation into the thylakoid membrane is characterized by a hydrophobic region whose exact amino acid content is not critical, and that need not be flanked on its amino terminus by a charged residue

    Disruption of Thylakoid-associated Kinase 1 Leads to Alteration of Light Harvesting in Arabidopsis

    Get PDF
    To survive fluctuations in quality and intensity of light, plants and algae are able to preferentially direct the absorption of light energy to either one of the two photosystems PSI or PSII. This rapid process is referred to as a state transition and has been correlated with the phosphorylation and migration of the light-harvesting complex protein (LHCP) between PSII and PSI. We show here that thylakoid protein kinases (TAKs) are required for state transitions in Arabidopsis. Antisense TAK1 expression leads to a loss of LHCP phosphorylation and a reduction in state transitions. Preferential activation of PSII causes LHCP to accumulate with PSI, and TAK1 mutants disrupt this process. Finally, TAKs also influence the phosphorylation of multiple thylakoid proteins

    TAKs, thylakoid membrane protein kinases associated with energy transduction

    Get PDF
    The phosphorylation of proteins within the eukaryotic photosynthetic membrane is thought to regulate a number of photosynthetic processes in land plants and algae. Both light quality and intensity influence protein kinase activity via the levels of reductants produced by the thylakoid electron transport chain. We have isolated a family of proteins called TAKs, Arabidopsis thylakoid membrane threonine kinases that phosphorylate the light harvesting complex proteins. TAK activity is enhanced by reductant and is associated with the photosynthetic reaction center II and the cytochrome b6f complex. TAKs are encoded by a gene family that has striking similarity to transforming growth factor β receptors of metazoans. Thus thylakoid protein phosphorylation may be regulated by a cascade of reductant-controlled membrane-bound protein kinases

    Requirement for pectin methyl esterase and preference for fragmented over native pectins for wall-associated kinase-activated, EDS1/PAD4-dependent stress response in arabidopsis

    Get PDF
    Background: The wall-associated kinases (WAKs) serve as pectin receptors. Results: A pectin methyl esterase and two transcription factor mutants suppress a dominant WAK allele. Conclusion: De-esterification of pectin is required for WAK activation though EDS1 and PAD4. Significance: The results provide a mechanism for the state of pectins to activate two different pathways. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc

    A dominant allele of arabidopsis pectin-binding wall-associated kinase induces a stress response suppressed by MPK6 but not MPK3 mutations

    Get PDF
    The plant cell wall is composed of a matrix of cellulose fibers, flexible pectin polymers, and an array of assorted carbohydrates and proteins. The receptor-like Wall-Associated Kinases (WAKs) of Arabidopsis bind pectin in the wall, and are necessary both for cell expansion during development and for a response to pathogens and wounding. Mitogen Activated Protein Kinases (MPKs) form a major signaling link between cell surface receptors and both transcriptional and enzyme regulation in eukaryotes, and Arabidopsis MPK6 and MPK3 indeed have important roles in development and the response to stress and pathogens. A dominant allele of WAK2 requires kinase activity and activates a stress response that includes an increased ROS accumulation and the up-regulation of numerous genes involved in pathogen resistance, wounding, and cell wall biogenesis. This dominant allele requires a functional pectin binding and kinase domain, indicating that it is engaged in a WAK signaling pathway. A null mutant of the major plasma membrane ROS-producing enzyme complex, rbohd/f does not suppress the WAK2cTAP-induced phenotype. A mpk6, but not a mpk3, null allele is able to suppress the effects of this dominant WAK2 mutation, thus distinguishing MPK3 and MPK6, whose activity previously was thought to be redundant. Pectin activation of gene expression is abated in a wak2-null, but is tempered by the WAK-dominant allele that induces elevated basal stress-related transcript levels. The results suggest a mechanism in which changes to the cell wall can lead to a large change in cellular responses and help to explain how pathogens and wounding can have general effects on growth. The Author 2011. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.2011 © The Author 2011. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS

    Requirement for the induced expression of a cell wall associated receptor kinase for survival during the pathogen response

    Get PDF
    Pathogen infection of angiosperms must rely on some interaction between the extracellular matrix (ECM) and the invading agent, and may be accompanied by signaling between the ECM and cytoplasm. An Arabidopsis cell wall associated receptor kinase (Wak1) has an amino-terminal domain that is tightly associated with the ECM, spans the plasma membrane and has a cytoplasmic protein kinase domain. Wak1 expression is induced when Arabidopsis plants are infected with pathogen, or when the pathogen response is stimulated either by exogenous salicylate (SA) or its analog 2,2-dichloroisonicotinic acid (INA). This Wak1 induction requires the positive regulator NPR1/NIM1. Thus Wak1 is a pathogen-related (PR) protein. Expression of an antisense and a dominant negative allele of Wak1 shows that induced expression of Wak1 is needed for a plant to survive if stimulated by INA. Ectopic expression of the entire Wak1, or the kinase domain alone, can provide resistance to otherwise lethal SA levels. These experiments suggest that Wak1 expression and other PR proteins are protecting plants from detrimental effects incurred during the pathogen response. These results provide a direct link between a protein kinase that could mediate signals from the ECM, to the events that are precipitated by a pathogen infection
    corecore