1,242 research outputs found

    Purification of a phospholipase C froM Bacillus cereus

    Full text link
    Phospholipase C activity present in the growth medium of Bacillus cereus was purified 20-fold by chromatography on polyethyleneimine-cellulose columns, or by treatment with protamine sulfate and subsequent chromatography on DEAE-cellulose columns. Purified enzyme preparations retained the ability to hydrolyze ethanolamine phosphoglycerides in the absence of choline phosphoglycerides. A typical preparation had a specific activity of about 9 [mu]moles/min per mg toward purified diacyl glycerophosphoryl ethanolamine and a specific activity of about 15-20 [mu]moles/ min per mg toward diacyl glycerophosphorylmonomethylethanolamine and diacyl glycerophosphoryl choline. Monoacyl glycerophosphate was not hydrolyzed under similar conditions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/32856/1/0000232.pd

    Mechanism of thermally activated c-axis dissipation in layered High-Tc_c superconductors at high fields

    Full text link
    We propose a simple model which explains experimental behavior of cc-axis resistivity in layered High-Tc_c superconductors at high fields in a limited temperature range. It is generally accepted that the in-plane dissipation at low temperatures is caused by small concentration of mobile pancake vortices whose diffusive motion is thermally activated. We demonstrate that in such situation a finite conductivity appears also in cc-direction due to the phase slips between the planes caused by the mobile pancakes. The model gives universal relation between the components of conductivity which is in good agreement with experimental data.Comment: RevTeX, 4 pages, 2 Postscript figure

    The Canonical Model of a Singular Curve

    Full text link
    We give refined statements and modern proofs of Rosenlicht's results about the canonical model C' of an arbitrary complete integral curve C. Notably, we prove that C and C' are birationally equivalent if and only if C is nonhyperelliptic, and that, if C is nonhyperelliptic, then C' is equal to the blowup of C with respect to the canonical sheaf \omega. We also prove some new results: we determine just when C' is rational normal, arithmetically normal, projectively normal, and linearly normal.Comment: 28 pages, no figures, IV Congresso Iberoamericano de Geometria Complex

    The BARD1 C-Terminal Domain Structure and Interactions with Polyadenylation Factor CstF-50†

    Get PDF
    The BARD1 N-terminal RING domain binds BRCA1 while the BARD1 C-terminal ankyrin and tandem BRCT repeat domains bind CstF-50 to modulate mRNA processing and RNAP II stability in response to DNA damage. Here we characterize the BARD1 structural biochemistry responsible for CstF- 50 binding. The crystal structure of the BARD1 BRCT domain uncovers a degenerate phosphopeptide binding pocket lacking the key arginine required for phosphopeptide interactions in other BRCT proteins.Small angle X-ray scattering together with limited proteolysis results indicates that ankyrin and BRCT domains are linked by a flexible tether and do not adopt a fixed orientation relative to one another. Protein pull-down experiments utilizing a series of purified BARD1 deletion mutants indicate that interactions between the CstF-50 WD-40 domain and BARD1 involve the ankyrin-BRCT linker but do not require ankyrin or BRCT domains. The structural plasticity imparted by the ANK-BRCT linker helps to explain the regulated assembly of different protein BARD1 complexes with distinct functions in DNA damage signaling including BARD1-dependent induction of apoptosis plus p53 stabilization and interactions. BARD1 architecture and plasticity imparted by the ANK-BRCT linker are suitable to allow the BARD1 C-terminus to act as a hub with multiple binding sites to integrate diverse DNA damage signals directly to RNA polymerase

    The 3′ processing factor CstF functions in the DNA repair response

    Get PDF
    Following DNA damage, mRNA levels decrease, reflecting a coordinated interaction of the DNA repair, transcription and RNA processing machineries. In this study, we provide evidence that transcription and polyadenylation of mRNA precursors are both affected in vivo by UV treatment. We next show that the polyadenylation factor CstF, plays a direct role in the DNA damage response. Cells with reduced levels of CstF display decreased viability following UV treatment, reduced ability to ubiquitinate RNA polymerase II (RNAP II), and defects in repair of DNA damage. Furthermore, we show that CstF, RNAP II and BARD1 are all found at sites of repaired DNA. Our results indicate that CstF plays an active role in the response to DNA damage, providing a link between transcription-coupled RNA processing and DNA repair

    Easily retrievable objects among the NEO population

    Get PDF
    Asteroids and comets are of strategic importance for science in an effort to understand the formation, evolution and composition of the Solar System. Near-Earth Objects (NEOs) are of particular interest because of their accessibility from Earth, but also because of their speculated wealth of material resources. The exploitation of these resources has long been discussed as a means to lower the cost of future space endeavours. In this paper, we consider the currently known NEO population and define a family of so-called Easily Retrievable Objects (EROs), objects that can be transported from accessible heliocentric orbits into the Earth’s neighbourhood at affordable costs. The asteroid retrieval transfers are sought from the continuum of low energy transfers enabled by the dynamics of invariant manifolds; specifically, the retrieval transfers target planar, vertical Lyapunov and halo orbit families associated with the collinear equilibrium points of the Sun-Earth Circular Restricted Three Body problem. The judicious use of these dynamical features provides the best opportunity to find extremely low energy Earth transfers for asteroid material. A catalogue of asteroid retrieval candidates is then presented. Despite the highly incomplete census of very small asteroids, the ERO catalogue can already be populated with 12 different objects retrievable with less than 500 m/s of Δv. Moreover, the approach proposed represents a robust search and ranking methodology for future retrieval candidates that can be automatically applied to the growing survey of NEOs

    Pinning-induced transition to disordered vortex phase in layered superconductors

    Full text link
    Destruction of the vortex lattice by random point pinning is considered as a mechanism of the ``second peak'' transition observed experimentally in weakly coupled layered high temperature superconductors. The transition field separating the topologically ordered quasilattice from the amorphous vortex configuration is strongly influenced by the layered structure and by the nonlocal nature of the vortex tilt energy due to the magnetic interlayer coupling. We found three different regimes of transition depending on the relative strength of the Josephson and magnetic couplings. The regimes can be distinguished by the dependence of the transition fieldComment: 8 pages, 3 Postscript figures. Accepted to Phys. Rev.B. (regular article

    New Experimental Limits on Macroscopic Forces Below 100 Microns

    Full text link
    Results of an experimental search for new macroscopic forces with Yukawa range between 5 and 500 microns are presented. The experiment uses 1 kHz mechanical oscillators as test masses with a stiff conducting shield between them to suppress backgrounds. No signal is observed above the instrumental thermal noise after 22 hours of integration time. These results provide the strongest limits to date between 10 and 100 microns, improve on previous limits by as much as three orders of magnitude, and rule out half of the remaining parameter space for predictions of string-inspired models with low-energy supersymmetry breaking. New forces of four times gravitational strength or greater are excluded at the 95% confidence level for interaction ranges between 200 and 500 microns.Comment: 25 Pages, 7 Figures: Minor Correction

    Nonlinear Magneto-Optical Response of ss- and dd-Wave Superconductors

    Full text link
    The nonlinear magneto-optical response of ss- and dd-wave superconductors is discussed. We carry out the symmetry analysis of the nonlinear magneto-optical susceptibility in the superconducting state. Due to the surface sensitivity of the nonlinear optical response for systems with bulk inversion symmetry, we perform a group theoretical classification of the superconducting order parameter close to a surface. For the first time, the mixing of singlet and triplet pairing states induced by spin-orbit coupling is systematically taken into account. We show that the interference of singlet and triplet pairing states leads to an observable contribution of the nonlinear magneto-optical Kerr effect. This effect is not only sensitive to the anisotropy of the gap function but also to the symmetry itself. In view of the current discussion of the order parameter symmetry of High-Tc_c superconductors, results for a tetragonal system with bulk singlet pairing for various pairing symmetries are discussed.Comment: 21 pages (REVTeX) with 8 figures (Postscript

    Ground State Vortex Lattice Structures in d-wave Superconductors

    Get PDF
    We show in a realistic dx2y2d_{x^{2}-y^{2}} symmetry gap model for a cuprate superconductor that the clean vortex lattice has discontinuous structural transitions (at and near T=0), as a function of the magnetic field BB along the c-axis. The transitions arise from the singular nonlocal and anisotropic susceptibility of the dx2y2d_{x^{2}-y^{2}} superconductor to the perturbation caused by supercurrents associated with vortices. The susceptibility, due to virtual Dirac quasiparticle-hole excitation, is calculated carefully, and leads to a ground state transition for the triangular lattice from an orientation along one of the crystal axis to one at 45o^o to them, i.e, along the gap zero direction. The field scale is seen to be 5 Tesla (Δ0/ta)2Φ0 \sim (\Delta_{0}/ta)^{2}\Phi_{0}, where Δ0\Delta_{0} is the gap maximum, tt is the nearest neighbour hopping, aa is the lattice constant, and Φ0\Phi_{0} is the flux quantum. At much higher fields (28T\sim 28T) there is a discontinuous transition to a centred square structure. The source of the differences from existing calculations, and experimental observability are discussed, the latter especially in view of the very small (a few degrees KK per vortex) differences in the ground state energy.Comment: To be published in Phys. Rev.
    corecore