365 research outputs found
Distribution and host range of the grapevine plasmodiophorid Sorosphaera viticola
Sorosphaera viticola, an obligate parasite of grapevine, was first detected in 2003 in roots of Vitis berlandieri x V. riparia rootstocks in a vineyard in the German Rheingau. To estimate the distribution and the abundance of S. viticola, other German and Austrian winegrowing areas (Mosel-Saar-Ruwer, Rhineland-Palatinate, Weinviertel) were screened. Vineyards planted with different rootstocks or own-rooted V. vinifera vines were chosen to elucidate the host range of this plasmodiophorid within the genus Vitis. S. viticola was found in different V. berlandieri x V. riparia hybrids and in roots of V. vinifera. Root samples from wild V. riparia from the Niagara Peninsula (Canada) were also found to be infested by S. viticola. This is the first record of S. viticola outside of Europe
Quantum simulation of the Klein paradox with trapped ions
We report on quantum simulations of relativistic scattering dynamics using
trapped ions. The simulated state of a scattering particle is encoded in both
the electronic and vibrational state of an ion, representing the discrete and
continuous components of relativistic wave functions. Multiple laser fields and
an auxiliary ion simulate the dynamics generated by the Dirac equation in the
presence of a scattering potential. Measurement and reconstruction of the
particle wave packet enables a frame-by-frame visualization of the scattering
processes. By precisely engineering a range of external potentials we are able
to simulate text book relativistic scattering experiments and study Klein
tunneling in an analogue quantum simulator. We describe extensions to solve
problems that are beyond current classical computing capabilities.Comment: 3 figures, accepted for publication in PR
Single-photon Resolved Cross-Kerr Interaction for Autonomous Stabilization of Photon-number States
Quantum states can be stabilized in the presence of intrinsic and
environmental losses by either applying active feedback conditioned on an
ancillary system or through reservoir engineering. Reservoir engineering
maintains a desired quantum state through a combination of drives and designed
entropy evacuation. We propose and implement a quantum reservoir engineering
protocol that stabilizes Fock states in a microwave cavity. This protocol is
realized with a circuit quantum electrodynamics platform where a Josephson
junction provides direct, nonlinear coupling between two superconducting
waveguide cavities. The nonlinear coupling results in a single photon resolved
cross-Kerr effect between the two cavities enabling a photon number dependent
coupling to a lossy environment. The quantum state of the microwave cavity is
discussed in terms of a net polarization and is analyzed by a measurement of
its steady state Wigner function.Comment: 8 pages, 6 figure
Pentagrams and paradoxes
Klyachko and coworkers consider an orthogonality graph in the form of a
pentagram, and in this way derive a Kochen-Specker inequality for spin 1
systems. In some low-dimensional situations Hilbert spaces are naturally
organised, by a magical choice of basis, into SO(N) orbits. Combining these
ideas some very elegant results emerge. We give a careful discussion of the
pentagram operator, and then show how the pentagram underlies a number of other
quantum "paradoxes", such as that of Hardy.Comment: 14 pages, 4 figure
miR-19a-3p containing exosomes improve function of ischemic myocardium upon shock wave therapy
AIMS: As many current approaches for heart regeneration exert unfavorable side-effects, the induction of endogenous repair mechanisms in ischemic heart disease is of particular interest. Recently, exosomes carrying angiogenic miRNAs have been described to improve heart function. However, it remains challenging to stimulate specific release of reparative exosomes in ischemic myocardium. In the present study, we sought to test the hypothesis that the physical stimulus of shock wave therapy (SWT) causes the release of exosomes. We aimed to substantiate the pro-angiogenic impact of the released factors, to identify the nature of their cargo, and to test their efficacy in vivo supporting regeneration and recovery after myocardial ischemia. METHODS AND RESULTS: Mechanical stimulation of ischemic muscle via SWT caused extracellular vesicle (EV) release from endothelial cells both in vitro and in vivo. Characterization of EVs via electron microscopy, nanoparticle tracking analysis and flow cytometry revealed specific exosome morphology and size with presence of exosome markers CD 9, CD81 and CD63. Exosomes exhibited angiogenic properties activating protein kinase b (Akt) and extracellular-signal regulated kinase (ERK) resulting in enhanced endothelial tube formation and proliferation. A miRNA array and transcriptome analysis via next-generation sequencing were performed to specify exosome content. miR-19a-3p was identified as responsible cargo, antimir-19a-3p antagonized angiogenic exosome effects. Exosomes and target miRNA were injected intramyocardially in mice after left anterior descending artery (LAD) ligation. Exosomes resulted in improved vascularization, decreased myocardial fibrosis and increased left ventricular ejection fraction as shown by transthoracic echocardiography. CONCLUSIONS: The mechanical stimulus of SWT causes release of angiogenic exosomes. miR-19a-3p is the vesicular cargo responsible for the observed effects. Released exosomes induce angiogenesis, decrease myocardial fibrosis and improve left ventricular function after myocardial ischemia. Exosome release via SWT could develop an innovative approach for the regeneration of ischemic myocardium
State-independent quantum violation of noncontextuality in four dimensional space using five observables and two settings
Recently, a striking experimental demonstration [G. Kirchmair \emph{et al.},
Nature, \textbf{460}, 494(2009)] of the state-independent quantum mechanical
violation of non-contextual realist models has been reported for any two-qubit
state using suitable choices of \emph{nine} product observables and \emph{six}
different measurement setups. In this report, a considerable simplification of
such a demonstration is achieved by formulating a scheme that requires only
\emph{five} product observables and \emph{two} different measurement setups. It
is also pointed out that the relevant empirical data already available in the
experiment by Kirchmair \emph{et al.} corroborate the violation of the NCR
models in accordance with our proof
Testing sequential quantum measurements: how can maximal knowledge be extracted?
The extraction of information from a quantum system unavoidably implies a
modification of the measured system itself. It has been demonstrated recently
that partial measurements can be carried out in order to extract only a portion
of the information encoded in a quantum system, at the cost of inducing a
limited amount of disturbance. Here we analyze experimentally the dynamics of
sequential partial measurements carried out on a quantum system, focusing on
the trade-off between the maximal information extractable and the disturbance.
In particular we consider two different regimes of measurement, demonstrating
that, by exploiting an adaptive strategy, an optimal trade-off between the two
quantities can be found, as observed in a single measurement process. Such
experimental result, achieved for two sequential measurements, can be extended
to N measurement processes.Comment: 5 pages, 3 figure
- …