32,056 research outputs found

    Direct solar-pumped iodine laser amplifier

    Get PDF
    In order to evaluate the feasibility of the solar pumped dye laser, the parametric study of a dye laser amplifier pumped by a solar simulator and flashlamp was carried out, and the amplifier gains were measured at various pump beam irradiances on the dye cell. Rhodamine 6G was considered as a candidate for the solar pumped laser because of its good utilization of the solar spectrum and high quantum efficiency. The measurement shows that a solar concentration of 20,000 is required to reach the threshold of the dye. The work to construct a kinetic model algorithm which predicts the output parameter of laser was progressed. The kinetic model was improved such that there is good agreement between the theoretical model and experimental data for the systems defined previously as flashlamp pumped laser oscillator, and the long path length solar pumped laser

    Direct solar-pumped iodine laser amplifier

    Get PDF
    The improvement on the collection system of the Tarmarack Solar Simulator beam was attemped. The basic study of evaluating the solid state laser materials for the solar pumping and also the work to construct a kinetic model algorithm for the flashlamp pumped iodine lasers were carried out. It was observed that the collector cone worked better than the lens assembly in order to collect the solar simulator beam and to focus it down to a strong power density. The study on the various laser materials and their lasing characteristics shows that the neodymium and chromium co-doped gadolinium scandium gallium garnet (Nr:Cr:GSGG) may be a strong candidate for the high power solar pumped solid state laser crystal. On the other hand the improved kinetic modeling for the flashlamp pumped iodine laser provides a good agreement between the theoretical model and the experimental data on the laser power output, and predicts the output parameters of a solar pumped iodine laser

    Detection of an exoplanet around the evolved K giant HD 66141

    Full text link
    Aims. We have been carrying out a precise radial velocity (RV) survey for K giants to search for and study the origin of the lowamplitude and long-periodic RV variations. Methods. We present high-resolution RV measurements of the K2 giant HD 66141 from December 2003 to January 2011 using the fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at Bohyunsan Optical Astronomy Observatory (BOAO). Results. We find that the RV measurements for HD 66141 exhibit a periodic variation of 480.5 +/- 0.5 days with a semi-amplitude of 146.2 +/- 2.7 m/s. The Hipparcos photometry and bisector velocity span (BVS) do not show any obvious correlations with RV variations. We find indeed 706.4 +/- 35.0 day variations in equivalent width (EW) measurements of H_alpha line and 703.0 +/- 39.4 day variations in a space-born measurements 1.25{\mu} flux of HD 66141 measured during COBE/DIRBE experiment. We reveal that a mean value of long-period variations is about 705 +/- 53 days and the origin is a rotation period of the star and variability that is caused by surface inhomogeneities. For the 480 day periods of RV variations an orbital motion is the most likely explanation. Assuming a stellar mass of 1.1 +/- 0.1 M_Sun? for HD 66141, we obtain a minimum mass for the planetary companion of 6.0 +/- 0.3 M_Jup with an orbital semi-major axis of 1.2 +/- 0.1 AU and an eccentricity of 0.07 +/- 0.03.Comment: 7 pages, 10 figures, 3 tables, accepted for publisation in Astronomy & Astrophysic

    Low-amplitude and long-period radial velocity variations in giants HD 3574, 63 Cygni, and HD 216946 (Research Note)

    Full text link
    Aims. We study the low-amplitude and long-period variations in evolved stars using precise radial velocity measurements. Methods. The high-resolution, fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) was used from September 2004 to May 2014 as part of the exoplanet search program at the Bohyunsan Optical Astronomy Observatory (BOAO). Results. We report the detection of low-amplitude and long-period orbital radial velocity variations in three evolved stars, HD 3574, 63 Cyg, and HD 216946. They have periods of 1061, 982, and 1382 days and semi-amplitudes of 376, 742, and 699 m/s, respectively.Comment: 6 pages, 7 figures, 4 tables, accepted for publisation in Astronomy & Astrophysic
    • …
    corecore