13 research outputs found
Monolithic optical integrated control circuitry for GaAs MMIC-based phased arrays
Gallium arsenide (GaAs) monolithic microwave integrated circuits (MMIC's) show promise in phased-array antenna applications for future space communications systems. Their efficient usage will depend on the control of amplitude and phase signals for each MMIC element in the phased array and in the low-loss radiofrequency feed. For a phased array contining several MMIC elements a complex system is required to control and feed each element. The characteristics of GaAs MMIC's for 20/30-GHz phased-array systems are discussed. The optical/MMIC interface and the desired characteristics of optical integrated circuits (OIC's) for such an interface are described. Anticipated fabrication considerations for eventual full monolithic integration of optical integrated circuits with MMIC's on a GaAs substrate are presented
MMIC antenna technology development in the 30/20 gigahertz band
This paper presents a progress summary of NASA's efforts in developing 20 and 30 GHz GaAs MMIC devices and an advanced satellite communications antenna system using these devices. In the interest of preserving resources such as frequency spectrum and orbital space the antenna system is being developed with multiple fixed spot beams and multiple scanning spot beams. NASA set high goals for the MMIC development to pushc GaAs technology. These goals and the main features of the MMIC devices are discussed. Some packaging and characterization considerations are also discussed. The 20 GHz transmit antenna and 30 GHz receive antenna are being developed separately. The approach selected is to perform contractual configuration studies, purchase a 20-GHz experimental antenna system (EAS) and perform in-house evaluation. The features and key specifications of the EAS are discussed. Additional supporting technologies such as effects of coupling on modest sized arrays, MMIC matching techniques, in-house analytical capability, wideband and dual frequency microstrip patch array development, and MMIC packaging techniques are described. Some plans for future are also discussed
Microwave monolithic integrated circuit development for future spaceborne phased array antennas
The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented highlighting the advantages of distributed amplifier approach compared to the conventional single power source designs
Propulsion Investigation for Zero and Near-Zero Emissions Aircraft
As world emissions are further scrutinized to identify areas for improvement, aviation s contribution to the problem can no longer be ignored. Previous studies for zero or near-zero emissions aircraft suggest aircraft and propulsion system sizes that would perform propulsion system and subsystems layout and propellant tankage analyses to verify the weight-scaling relationships. These efforts could be used to identify and guide subsequent work on systems and subsystems to achieve viable aircraft system emissions goals. Previous work quickly focused these efforts on propulsion systems for 70- and 100-passenger aircraft. Propulsion systems modeled included hydrogen-fueled gas turbines and fuel cells; some preliminary estimates combined these two systems. Hydrogen gas-turbine engines, with advanced combustor technology, could realize significant reductions in nitrogen emissions. Hydrogen fuel cell propulsion systems were further laid out, and more detailed analysis identified systems needed and weight goals for a viable overall system weight. Results show significant, necessary reductions in overall weight, predominantly on the fuel cell stack, and power management and distribution subsystems to achieve reasonable overall aircraft sizes and weights. Preliminary conceptual analyses for a combination of gas-turbine and fuel cell systems were also performed, and further studies were recommended. Using gas-turbine engines combined with fuel cell systems can reduce the fuel cell propulsion system weight, but at higher fuel usage than using the fuel cell only