4,248 research outputs found
High-precision CTE measurement of hybrid C/SiC composite for cryogenic space telescopes
This paper presents highly precise measurements of thermal expansion of a
"hybrid" carbon-fiber reinforced silicon carbide composite,
HB-Cesic\textregistered - a trademark of ECM, in the temperature region of
\sim310-10K. Whilst C/SiC composites have been considered to be promising for
the mirrors and other structures of space-borne cryogenic telescopes, the
anisotropic thermal expansion has been a potential disadvantage of this
material. HB-Cesic\textregistered is a newly developed composite using a
mixture of different types of chopped, short carbon-fiber, in which one of the
important aims of the development was to reduce the anisotropy. The
measurements indicate that the anisotropy was much reduced down to 4% as a
result of hybridization. The thermal expansion data obtained are presented as
functions of temperature using eighth-order polynomials separately for the
horizontal (XY-) and vertical (Z-) directions of the fabrication process. The
average CTEs and their dispersion (1{\sigma}) in the range 293-10K derived from
the data for the XY- and Z-directions were 0.8050.003\times10
K and 0.837\pm0.001\times10 K, respectively. The absolute
accuracy and the reproducibility of the present measurements are suggested to
be better than 0.01\times10 K and 0.001\times(10)^{-6} K^{-1},
respectively. The residual anisotropy of the thermal expansion was consistent
with our previous speculation regarding carbon-fiber, in which the residual
anisotropy tended to lie mainly in the horizontal plane.Comment: Accepted by Cryogeincs. 12 pages, 3 figures, 1 tabll
Molecular-beam epitaxial growth of a far-infrared transparent electrode for extrinsic Germanium photoconductors
We have evaluated the optical and electrical properties of a far-infrared
(IR) transparent electrode for extrinsic germanium (Ge) photoconductors at 4 K,
which was fabricated by molecular beam epitaxy (MBE). As a far-IR transparent
electrode, an aluminum (Al)-doped Ge layer is formed at well-optimized doping
concentration and layer thickness in terms of the three requirements: high
far-IR transmittance, low resistivity, and excellent ohmic contact. The
Al-doped Ge layer has the far-IR transmittance of >95 % within the wavelength
range of 40--200 microns, while low resistivity (~5 ohm-cm) and ohmic contact
are ensured at 4 K. We demonstrate the applicability of the MBE technology in
fabricating the far-IR transparent electrode satisfying the above requirements.Comment: 18 pages, 7 figures, accepted for publication in the PAS
Dust properties in the cold and hot gas phases of the ATLAS3D early-type galaxies as revealed by AKARI
The properties of the dust in the cold and hot gas phases of early-type
galaxies (ETGs) are key to understand ETG evolution. We thus conducted a
systematic study of the dust in a large sample of local ETGs, focusing on
relations between the dust and the molecular, atomic, and X-ray gas of the
galaxies, as well as their environment. We estimated the dust temperatures and
masses of the 260 ETGs from the ATLAS3D survey, using fits to their spectral
energy distributions primarily constructed from AKARI measurements. We also
used literature measurements of the cold (CO and HI) and X-ray gas phases. Our
ETGs show no correlation between their dust and stellar masses, suggesting
inefficient dust production by stars and/or dust destruction in X-ray gas. The
global dust-to-gas mass ratios of ETGs are generally lower than those of
late-type galaxies, likely due to dust-poor HI envelopes in ETGs. They are also
higher in Virgo Cluster ETGs than in group and field ETGs, but the same ratios
measured in the central parts of the galaxies only are independent of galaxy
environment. Slow-rotating ETGs have systematically lower dust masses than
fast-rotating ETGs. The dust masses and X-ray luminosities are correlated in
fast-rotating ETGs, whose star formation rates are also correlated with the
X-ray luminosities. The correlation between dust and X-rays in fast-rotating
ETGs appears to be caused by residual star formation, while slow-rotating ETGs
are likely well evolved, and thus exhausting their dust. These results appear
consistent with the postulated evolution of ETGs, whereby fast-rotating ETGs
form by mergers of late-type galaxies and associated bulge growth, while
slow-rotating ETGs form by (dry) mergers of fast-rotating ETGs. Central cold
dense gas appears to be resilient against ram pressure stripping, suggesting
that Virgo Cluster ETGs may not suffer strong related star formation
suppression.Comment: 18 pages, 7 figures, accepted for publication in A&
Spatial Distributions of Cold and Warm Interstellar Dust in M101 Resolved with AKARI/Far-Infrared Surveyor (FIS)
The nearby face-on spiral galaxy M101 has been observed with the Far-Infrared
Surveyor (FIS) onboard AKARI. The far-infrared four-band images reveal fine
spatial structures of M101, which include global spiral patterns, giant HII
regions embedded in outer spiral arms, and a bar-like feature crossing the
center. The spectral energy distribution of the whole galaxy shows the presence
of the cold dust component (18 K) in addition to the warm dust component (55
K). The distribution of the cold dust is mostly concentrated near the center,
and exhibits smoothly distributed over the entire extent of the galaxy, whereas
the distribution of the warm dust indicates some correlation with the spiral
arms, and has spotty structures such as four distinctive bright spots in the
outer disk in addition to a bar-like feature near the center tracing the CO
intensity map. The star-formation activity of the giant HII regions that
spatially correspond to the former bright spots is found to be significantly
higher than that of the rest of the galaxy. The latter warm dust distribution
implies that there are significant star-formation activities in the entire bar
filled with molecular clouds. Unlike our Galaxy, M101 is a peculiar normal
galaxy with extraordinary active star-forming regions.Comment: 18 pages, 9 figures, accepted for publication in PASJ AKARI special
issu
Near- to mid-infrared spectroscopy of the heavily obscured AGN LEDA 1712304 with AKARI/IRC
Context. Although heavily obscured active galactic nuclei (AGNs) have been
found by many observational studies, the properties of the surrounding dust are
poorly understood. Using AKARI/IRC spectroscopy, we discover a new sample of a
heavily obscured AGN in LEDA 1712304 which shows a deep spectral absorption
feature due to silicate dust. Aims. We study the infrared (IR) spectral
properties of circumnuclear silicate dust in LEDA 1712304. Methods. We perform
IR spectral fitting, considering silicate dust properties such as composition,
porosity, size and crystallinity. Spectral energy distribution (SED) fitting is
also performed to the flux densities in the UV to sub-millimeter range to
investigate the global spectral properties. Results. The best-fit model
indicates 0.1 m-sized porous amorphous olivine (; ) with crystalline pyroxene. The optical
depth is , while the total IR luminosity and stellar
mass are estimated to be and
, respectively. In such low
and ranges, there are few galaxies which show that
large . Conclusions. The silicate dust in the AGN torus of
LEDA 1712304 has properties notably similar to those in other AGNs as a whole,
but slightly different in the wing shape of the absorption profile. The
porosity of the silicate dust suggests dust coagulation or processing in the
circumnuclear environments, while the crystallinity suggests that the silicate
dust is relatively fresh.Comment: 9 pages, 6 figures, accepted for publication in A&
Large-scale distributions of mid- and far-infrared emission from the center to the halo of M82 revealed with AKARI
The edge-on starburst galaxy M82 exhibits complicated distributions of
gaseous materials in its halo, which include ionized superwinds driven by
nuclear starbursts, neutral materials entrained by the superwinds, and
large-scale neutral streamers probably caused by a past tidal interaction with
M81. We investigate detailed distributions of dust grains and polycyclic
aromatic hydrocarbons (PAHs) around M82 to understand their interplay with the
gaseous components. We performed mid- (MIR) and far-infrared (FIR) observations
of M82 with the Infrared Camera and Far-Infrared Surveyor on board AKARI. We
obtain new MIR and FIR images of M82, which reveal both faint extended emission
in the halo and very bright emission in the center with signal dynamic ranges
as large as five and three orders of magnitude for the MIR and FIR,
respectively. We detect MIR and FIR emission in the regions far away from the
disk of the galaxy, reflecting the presence of dust and PAHs in the halo of
M82. We find that the dust and PAHs are contained in both ionized and neutral
gas components, implying that they have been expelled into the halo of M82 by
both starbursts and galaxy interaction. In particular, we obtain a tight
correlation between the PAH and H emission, which provides evidence
that the PAHs are well mixed in the ionized superwind gas and outflowing from
the disk.Comment: 12 pages, 8 figures, accepted for publication in A&
AKARI near-infrared spectroscopy of the aromatic and aliphatic hydrocarbon emission features in the galactic superwind of M 82
Aims. We investigate the properties of hydrocarbon grains in the galactic
superwind of M 82. Methods. With AKARI, we performed near-infrared (2.5 - 4.5
um) spectroscopic observations of 34 regions in M 82 including its northern and
southern halos. Results. Many of the spectra show strong emission at 3.3 um due
to polycyclic aromatic hydrocarbons (PAHs) and relatively weak features at 3.4
- 3.6 um due to aliphatic hydrocarbons. In particular, we clearly detect the
PAH 3.3 um emission and the 3.4 - 3.6 um features in halo regions, which are
located at a distance of 2 kpc away from the galactic center. We find that the
ratios of the 3.4 - 3.6 um features to the 3.3 um feature intensity
significantly increase with distance from the galactic center, while the ratios
of the 3.3 um feature to the AKARI 7 um band intensity do not. Conclusions. Our
results clearly confirm the presence of small PAHs even in a harsh environment
of the halo of M 82. The results also reveal that the aliphatic hydrocarbons
emitting the 3.4 - 3.6 um features are unusually abundant in the halo,
suggesting that small carbonaceous grains are produced by shattering of larger
grains in the galactic superwind.Comment: 5 pages, 3 figures, 1 table, accepted for publication in A&
Monte Carlo renormalization group study of the Heisenberg and XY antiferromagnet on the stacked triangular lattice and the chiral model
With the help of the improved Monte Carlo renormalization-group scheme, we
numerically investigate the renormalization group flow of the antiferromagnetic
Heisenberg and XY spin model on the stacked triangular lattice (STA-model) and
its effective Hamiltonian, 2N-component chiral model which is used in
the field-theoretical studies. We find that the XY-STA model with the lattice
size exhibits clear first-order behavior. We also
find that the renormalization-group flow of STA model is well reproduced by the
chiral model, and that there are no chiral fixed point of
renormalization-group flow for N=2 and 3 cases. This result indicates that the
Heisenberg-STA model also undergoes first-order transition.Comment: v1:15 pages, 15 figures v2:updated references v3:added comments on
the higher order irrelevant scaling variables v4:added results of larger
sizes v5:final version to appear in J.Phys.Soc.Jpn Vol.72, No.
Non-local interactions in hydrodynamic turbulence at high Reynolds numbers: the slow emergence of scaling laws
We analyze the data stemming from a forced incompressible hydrodynamic
simulation on a grid of 2048^3 regularly spaced points, with a Taylor Reynolds
number of Re~1300. The forcing is given by the Taylor-Green flow, which shares
similarities with the flow in several laboratory experiments, and the
computation is run for ten turnover times in the turbulent steady state. At
this Reynolds number the anisotropic large scale flow pattern, the inertial
range, the bottleneck, and the dissipative range are clearly visible, thus
providing a good test case for the study of turbulence as it appears in nature.
Triadic interactions, the locality of energy fluxes, and structure functions of
the velocity increments are computed. A comparison with runs at lower Reynolds
numbers is performed, and shows the emergence of scaling laws for the relative
amplitude of local and non-local interactions in spectral space. The scalings
of the Kolmogorov constant, and of skewness and flatness of velocity
increments, performed as well and are consistent with previous experimental
results. Furthermore, the accumulation of energy in the small-scales associated
with the bottleneck seems to occur on a span of wavenumbers that is independent
of the Reynolds number, possibly ruling out an inertial range explanation for
it. Finally, intermittency exponents seem to depart from standard models at
high Re, leaving the interpretation of intermittency an open problem.Comment: 8 pages, 8 figure
- …