16 research outputs found
Putative second hit rare genetic variants in families with seemingly GBA-associated Parkinson’s disease
Rare variants in the beta-glucocerebrosidase gene (GBA1) are common genetic risk factors for alpha synucleinopathy, which often manifests clinically as GBA-associated Parkinson’s disease (GBA-PD). Clinically, GBA-PD closely mimics idiopathic PD, but it may present at a younger age and often aggregates in families. Most carriers of GBA variants are, however, asymptomatic. Moreover, symptomatic PD patients without GBA variant have been reported in families with seemingly GBA-PD. These observations obscure the link between GBA variants and PD pathogenesis and point towards a role for unidentified additional genetic and/or environmental risk factors or second hits in GBA-PD. In this study, we explored whether rare genetic variants may be additional risk factors for PD in two families segregating the PD-associated GBA1 variants c.115+1G>A (ClinVar ID: 93445) and p.L444P (ClinVar ID: 4288). Our analysis identified rare genetic variants of the HSP70 co-chaperone DnaJ homolog subfamily B member 6 (DNAJB6) and lysosomal protein prosaposin (PSAP) as additional factors possibly influencing PD risk in the two families. In comparison to the wild-type proteins, variant DNAJB6 and PSAP proteins show altered functions in the context of cellular alpha-synuclein homeostasis when expressed in reporter cells. Furthermore, the segregation pattern of the rare variants in the genes encoding DNAJB6 and PSAP indicated a possible association with PD in the respective families. The occurrence of second hits or additional PD cosegregating rare variants has important implications for genetic counseling in PD families with GBA1 variant carriers and for the selection of PD patients for GBA targeted treatments
Putative second hit rare genetic variants in families with seemingly GBA-associated Parkinson's disease
Rare variants in the beta-glucocerebrosidase gene (GBA1) are common genetic risk factors for alpha synucleinopathy, which often manifests clinically as GBA-associated Parkinson's disease (GBA-PD). Clinically, GBA-PD closely mimics idiopathic PD, but it may present at a younger age and often aggregates in families. Most carriers of GBA variants are, however, asymptomatic. Moreover, symptomatic PD patients without GBA variant have been reported in families with seemingly GBA-PD. These observations obscure the link between GBA variants and PD pathogenesis and point towards a role for unidentified additional genetic and/or environmental risk factors or second hits in GBA-PD. In this study, we explored whether rare genetic variants may be additional risk factors for PD in two families segregating the PD-associated GBA1 variants c.115+1G>A (ClinVar ID: 93445) and p.L444P (ClinVar ID: 4288). Our analysis identified rare genetic variants of the HSP70 co-chaperone DnaJ homolog subfamily B member 6 (DNAJB6) and lysosomal protein prosaposin (PSAP) as additional factors possibly influencing PD risk in the two families. In comparison to the wild-type proteins, variant DNAJB6 and PSAP proteins show altered functions in the context of cellular alpha-synuclein homeostasis when expressed in reporter cells. Furthermore, the segregation pattern of the rare variants in the genes encoding DNAJB6 and PSAP indicated a possible association with PD in the respective families. The occurrence of second hits or additional PD cosegregating rare variants has important implications for genetic counseling in PD families with GBA1 variant carriers and for the selection of PD patients for GBA targeted treatments
Ethnobotanical and biochemical study of berberis lycium royle collected from different areas of Azad Jammu and Kashmir
Berberis lycium Royle has a long history of medicinal uses to treat different diseases. It naturally grows on the mountains of Indian subcontinent. Its ethnobotanical and biochemical study from the state of Azad Jammu and Kashmir (AJ&K) was not previously explored. So, the objective of the current study was to explore the ethnobotanical and biochemical properties of the B. lycium Royle population of AJ&K. For this purpose, samples of B. lycium Royle were randomly collected from five districts of Azad Jammu and Kashmir, including thirty-five locations. Demographic features of informants such as plant part used, methods of preparation, modes of administration, conservation status, and ethnomedicinal uses were documented. It was used for treating different diseases such as diabetes, arthritis, joint pain, and stomach ulcer. This plant is very famous for providing medicinal roots, leaves, and fruits which are extensively used in many parts of the world. The biochemical analysis was conducted for total phenolic contents (TPC), chlorophyll contents, and antioxidant activity. The highest level of TPC found was 88.66 ± 1.07 µg/g of gallic acid equivalent phenolic (GAE) from leaves collected from Patikka (Chanjhal), Muzaffarabad District, AJ&K. The highest total chlorophyll contents (3.75 ± 0.53 µg/ml) were found in samples collected from Sathrian, Neelum District. The highest antioxidant activity with lowest IC50 value (33.26 µg/ml) was obtained from the root of sample collected from Bakreyali, Muzaffarabad District, as compared with other districts. The concentration of berberine was found to be 4.76 percent in the root bark of B. lycium Royle, estimated by high-performance liquid chromatography (HPLC). In syrup composition, 0.95 mg/5 ml of berberine was used. Hence, it is concluded that amongst the five districts, the plant parts (stem, fruits, and root) collected from Muzaffarabad District, AJ&K, showed the highest medicinal potential due to its unique climatic conditions
Segregation and potential functional impact of a rare stop-gain PABPC4L variant in familial atypical parkinsonism
Atypical parkinsonian disorders (APDs) comprise a group of neurodegenerative diseases with heterogeneous clinical and pathological features. Most APDs are sporadic, but rare familial forms have also been reported. Epidemiological and post-mortem studies associated APDs with oxidative stress and cellular protein aggregates. Identifying molecular mechanisms that translate stress into toxic protein aggregation and neurodegeneration in APDs is an active area of research. Recently, ribonucleic acid (RNA) stress granule (SG) pathways were discussed to be pathogenically relevant in several neurodegenerative disorders including APDs. Using whole genome sequencing, mRNA expression analysis, transfection assays and cell imaging, we investigated the genetic and molecular basis of a familial neurodegenerative atypical parkinsonian disorder. We investigated a family with six living members in two generations exhibiting clinical symptoms consistent with atypical parkinsonism. Two affected family members suffered from parkinsonism that was associated with ataxia. Magnetic resonance imaging (MRI) of these patients showed brainstem and cerebellar atrophy. Whole genome sequencing identified a heterozygous stop-gain variant (c.C811T; p.R271X) in the Poly(A) binding protein, cytoplasmic 4-like (PABPC4L) gene, which co-segregated with the disease in the family. In situ hybridization showed that the murine pabpc4l is expressed in several brain regions and in particular in the cerebellum and brainstem. To determine the functional impact of the stop-gain variant in the PABPC4L gene, we investigated the subcellular localization of PABPC4L in heterologous cells. Wild-type PABPC4L protein localized predominantly to the cell nucleus, in contrast to the truncated protein encoded by the stop-gain variant p.R271X, which was found homogeneously throughout the cell. Interestingly, the wild-type, but not the truncated protein localized to RasGAP SH3 domain Binding Protein (G3BP)-labeled cytoplasmic granules in response to oxidative stress induction. This suggests that the PABPC4L variant alters intracellular distribution and possibly the stress granule associated function of the protein, which may underlie APD in this family. In conclusion, we present genetic and molecular evidence supporting the role of a stop-gain PABPC4L variant in a rare familial APD. Our data shows that the variant results in cellular mislocalization and inability of the protein to associate with stress granules
Highly Efficient Zinc-Finger Nuclease-Mediated Disruption of an eGFP Transgene in Keratinocyte Stem Cells without Impairment of Stem Cell Properties
Further evidence for the association of CYP2D6*4 gene polymorphism with Parkinson’s disease: a case control study
Abstract Background Genetic and environmental risk factors play an important role for the susceptibility to sporadic Parkinson’s disease (PD). It was hypothesized that a splice variant of the CYP2D6 gene (CYP2D6*4 allele) is associated with PD because it alters the ability to metabolize toxins and in particular neurotoxins. CYP2D6 codes for the drug metabolizing enzyme debrisoquine 4-hydroxylase. The CYP2D6*4 variant results in an undetectable enzyme activity and consequently in a reduction in metabolism of some toxins. Methods Some of agricultural chemicals have neurotoxic potential and CYP2D6 is involved in their detoxification. Thus, we conducted a case control study to investigate the association of the CYP2D6*4 with PD in a Pakistani subpopulation that is known to be exposed to high levels of some agricultural pesticides, insecticides and herbicides. Results We found a significantly higher allele and genotype frequency of the CYP2D6*4 variant in 174 sporadic PD patients when compared to 200 controls. In addition, there was a trend to an earlier age of PD onset and a tremor dominant phenotype in CYP2D6*4 variant carriers. Conclusion Our data provide further evidence that a poor metabolizer status may increase the risk to develop PD especially in populations that are exposed to environmental toxins
Novel frameshift mutations in XPC gene underlie xeroderma pigmentosum in Pakistani families
Segregation and potential functional impact of a rare stop-gain PABPC4L variant in familial atypical Parkinsonism
Ethnobotanical and Biochemical Study of Berberis lycium Royle Collected from Different Areas of Azad Jammu and Kashmir
Berberis lycium Royle has a long history of medicinal uses to treat different diseases. It naturally grows on the mountains of Indian subcontinent. Its ethnobotanical and biochemical study from the state of Azad Jammu and Kashmir (AJ&K) was not previously explored. So, the objective of the current study was to explore the ethnobotanical and biochemical properties of the B. lycium Royle population of AJ&K. For this purpose, samples of B. lycium Royle were randomly collected from five districts of Azad Jammu and Kashmir, including thirty-five locations. Demographic features of informants such as plant part used, methods of preparation, modes of administration, conservation status, and ethnomedicinal uses were documented. It was used for treating different diseases such as diabetes, arthritis, joint pain, and stomach ulcer. This plant is very famous for providing medicinal roots, leaves, and fruits which are extensively used in many parts of the world. The biochemical analysis was conducted for total phenolic contents (TPC), chlorophyll contents, and antioxidant activity. The highest level of TPC found was 88.66 ± 1.07 µg/g of gallic acid equivalent phenolic (GAE) from leaves collected from Patikka (Chanjhal), Muzaffarabad District, AJ&K. The highest total chlorophyll contents (3.75 ± 0.53 µg/ml) were found in samples collected from Sathrian, Neelum District. The highest antioxidant activity with lowest IC50 value (33.26 µg/ml) was obtained from the root of sample collected from Bakreyali, Muzaffarabad District, as compared with other districts. The concentration of berberine was found to be 4.76 percent in the root bark of B. lycium Royle, estimated by high-performance liquid chromatography (HPLC). In syrup composition, 0.95 mg/5 ml of berberine was used. Hence, it is concluded that amongst the five districts, the plant parts (stem, fruits, and root) collected from Muzaffarabad District, AJ&K, showed the highest medicinal potential due to its unique climatic conditions.</jats:p
