6,340 research outputs found

    Motives for investment in human capital of children: evidence from Indonesian Family Life Survey Data

    Get PDF
    Two alternative models of parental investments in children's human capital are considered and tested empirically using the Indonesian Family Life Survey (IFLS). The pure loan model and the reciprocity with two-sided altruism model yield different predictions about the effect of children's education level and number of children on intergenerational transfers. Using these predictions, a specification test is carried out to differentiate these two models with the data. The evidence favors the second model of reciprocity with two-sided altruism.Human capital, pure loan, altruism, Indonesian Family Life Survey Data

    Current measurements in electrospinning

    Get PDF
    Electrospinning provides an economical method of producing nanofibers. The current carried by the main spinning jet is found to be one of the factors in determining the diameter of the fiber product. However, current sources such as the corona discharge and secondary jets will lead to a systematic overestimation of the actual current value. In this research, experiments with different configurations are set up to investigate the influence of various parameters on the measured current. It is noticed that the measured current is nearly independent on the flow rate of the solution and the external cover. A large amount of current is detected even the syringe is empty when the experiments are carried out using conductive needle. By substituting the standard electrode with penetrating electrode, the current dropped to zero when the syringe was empty. An average of 0.26E-6 Amps reduction on the amount of measured current is observed when the syringe is filled with methylene chloride. In all cases that non-conductive Teflon needle is applied, a significant lower current is observed. However, experiments conducted using 12 wt% PCL polymer solution show nearly undetectable current value in all configurations. For the current behavior on outer collector plate, the measured current on the outer plate are extremely low regardless of needle type, electrode type, and syringe content conditions

    An Equilibrium Analysis of the Simultaneous Ascending Auction

    Full text link
    We analyze the dynamic simultaneous ascending auction (SAA), which was pioneered by the US Federal Communications Commission (FCC) in 1994 and has since become the standard to conduct large-scale, large-stakes spectrum auctions around the world. We consider an environment where local bidders, each interested in a single item, compete against one or more global bidders with super-additive values for combinations of items. In the SAA, competition takes place on an item-by-item basis, which creates an exposure problem for global bidders - when competing aggressively for a package, a global bidder may incur a loss when winning only a subset. We characterize the Bayes-Nash equilibria of the SAA, evaluate the impact of the exposure problem on revenue and efficiency, and compare its performance to that of the benchmark Vickrey-Clarke-Groves (VCG) mechanism. We show that individual and social incentives are aligned in the SAA in the sense that bidders' drop-out levels maximize expected welfare. Unlike the VCG mechanism, however, the SAA is not fully efficient because when a bidder drops out, information about others' values has been only partially revealed. Like the VCG mechanism, the SAA exhibits perverse revenue properties: due to the exposure problem, the SAA may result in non-core outcomes where local bidders obtain items at very low prices, and seller revenue can be decreasing in the number of bidders. Moreover, the SAA may result in lower revenues than the VCG mechanism. Finally, when the number of items grows large, the SAA and VCG mechanisms become (efficiency and revenue) equivalent

    Nonsurgical Treatment Options for Basal Cell Carcinoma

    Get PDF
    Basal cell carcinoma (BCC) remains the most common form of nonmelanoma skin cancer (NMSC) in Caucasians, with perhaps as many as 2 million new cases expected to occur in the United States in 2010. Many treatment options, including surgical interventions and nonsurgical alternatives, have been utilized to treat BCC. In this paper, two non-surgical options, imiquimod therapy and photodynamic therapy (PDT), will be discussed. Both modalities have demonstrated acceptable disease control rates, cosmetically superior outcomes, and short-term cost-effectiveness. Further studies evaluating long-term cure rates and long-term cost effectiveness of imiquimod therapy and PDT are needed

    Vancomycin in peritoneal dialysis: Clinical pharmacology considerations in therapy.

    Get PDF
    Intraperitoneal vancomycin is the first-line therapy in the management of peritoneal dialysis (PD)-related peritonitis. However, due to the paucity of data, vancomycin dosing for peritonitis in patients on automated peritoneal dialysis (APD) is empiric and based on clinical experience rather than evidence. Studies in continuous ambulatory peritoneal dialysis (CAPD) patients have been used to provide guidelines for dosing and are often extrapolated for APD use, but it is unclear whether this is appropriate. This review summarizes the available pharmacokinetic data used to inform optimal dosing in patients on CAPD or APD. The determinants of vancomycin disposition and pharmacodynamic effects are critically summarized, knowledge gaps explored, and a vancomycin dosing algorithm in PD patients is proposed

    Probing the Gamma-Ray Burst Rate with Trigger Simulations of the Swift Burst Alert Telescope

    Full text link
    The long gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While hundreds of GRBs are observed by Swift, it remains difficult to determine the intrinsic GRB rate due to the complex trigger algorithm of Swift. Current studies usually approximate the Swift trigger algorithm by a single detection threshold. However, unlike the previously flown GRB instruments, Swift has over 500 trigger criteria based on photon count rate and additional image threshold for localization. To investigate possible systematic biases and explore the intrinsic GRB properties, we developed a program that is capable of simulating all the rate trigger criteria and mimicking the image trigger threshold. We use this program to search for the intrinsic GRB rate. Our simulations show that adopting the complex trigger algorithm of Swift increases the detection rate of dim bursts. As a result, we find that either the GRB rate is much higher than previously expected at large redshift, or the luminosity evolution is non-negligible. We will discuss the best results of the GRB rate in our search, and their impact on the star-formation history.Comment: 6 pages, 3 figures, 7th Huntsville Gamma-Ray Burst Symposium, GRB 2013: paper 35 in eConf Proceedings C130414

    Probing the Cosmic Gamma-Ray Burst Rate with Trigger Simulations of the Swift Burst Alert Telescope

    Full text link
    The gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While hundreds of GRBs are observed by Swift, it remains difficult to determine the intrinsic GRB rate due to the complex trigger algorithm of Swift. Current studies of the GRB rate usually approximate the Swift trigger algorithm by a single detection threshold. However, unlike the previously flown GRB instruments, Swift has over 500 trigger criteria based on photon count rate and additional image threshold for localization. To investigate possible systematic biases and explore the intrinsic GRB properties, we develop a program that is capable of simulating all the rate trigger criteria and mimicking the image threshold. Our simulations show that adopting the complex trigger algorithm of Swift increases the detection rate of dim bursts. As a result, our simulations suggest bursts need to be dimmer than previously expected to avoid over-producing the number of detections and to match with Swift observations. Moreover, our results indicate that these dim bursts are more likely to be high redshift events than low-luminosity GRBs. This would imply an even higher cosmic GRB rate at large redshifts than previous expectations based on star-formation rate measurements, unless other factors, such as the luminosity evolution, are taken into account. The GRB rate from our best result gives a total number of 4571^{+829}_{-1584} GRBs per year that are beamed toward us in the whole universe. SPECIAL NOTE (2015.05.16): This new version incorporates an erratum. All the GRB rate normalizations (RGRB(z=0)R_{\rm GRB}(z=0)) should be a factor of 2 smaller than previously reported. Please refer to the Appendix for more details. We sincerely apologize for the mistake.Comment: 52 pages, 17 figures, published in ApJ 783, 24L (2014). An erratum is included. A typo in Eq. 8 is fixed in this versio

    Spin-Polarized Current Induced Torque in Magnetic Tunnel Junctions

    Full text link
    We present tight-binding calculations of the spin torque in non-collinear magnetic tunnel junctions based on the non-equilibrium Green functions approach. We have calculated the spin torque via the effective local magnetic moment approach and the divergence of the spin current. We show that both methods are equivalent, i.e. the absorption of the spin current at the interface is equivalent to the exchange interaction between the electron spins and the local magnetization. The transverse components of the spin torque parallel and perpendicular to the interface oscillate with different phase and decay in the ferromagnetic layer (FM) as a function of the distance from the interface. The period of oscillations is inversely proportional to the difference between the Fermi-momentum of the majority and minority electrons. The phase difference between the two transverse components of the spin torque is due to the precession of the electron spins around the exchange field in the FM layer. In absence of applied bias and for a relatively thin barrier the perpendicular component of the spin torque to the interface is non-zero due to the exchange coupling between the FM layers across the barrier.Comment: 6 pages, 3 figure

    Short gamma-ray bursts within 200 Mpc

    Get PDF
    We present a systematic search for short-duration gamma-ray bursts (GRBs) in the local Universe based on 14 yr of observations with the Neil Gehrels Swift Observatory. We cross-correlate the GRB positions with the GLADE catalogue of nearby galaxies, and find no event at a distance ≲100 Mpc and four plausible candidates in the range 100 Mpc ≲ D ≲ 200 Mpc. Although affected by low statistics, this number is higher than the one expected for chance alignments to random galaxies, and possibly suggests a physical association between these bursts and nearby galaxies. By assuming a local origin, we use these events to constrain the range of properties for X-ray counterparts of neutron star mergers. Optical upper limits place tight constraints on the onset of a blue kilonova, and imply either low masses (⁠≲10−3M⊙⁠) of lanthanide-poor ejecta or unfavorable orientations (θ_(obs) ≳ 30 deg). Finally, we derive that the all-sky rate of detectable short GRBs within 200 Mpc is 1.3^(+1.7)_(−0.8) yr⁻¹ (68 per cent confidence interval), and discuss the implications for the GRB outflow structure. If these candidates are instead of cosmological origin, we set a upper limit of ≲2.0 yr⁻¹ (90 per cent confidence interval) to the rate of nearby events detectable with operating gamma-ray observatories, such as Swift and Fermi
    corecore