12,560 research outputs found
The Network Nullspace Property for Compressed Sensing of Big Data over Networks
We present a novel condition, which we term the net- work nullspace property,
which ensures accurate recovery of graph signals representing massive
network-structured datasets from few signal values. The network nullspace
property couples the cluster structure of the underlying network-structure with
the geometry of the sampling set. Our results can be used to design efficient
sampling strategies based on the network topology
Recovery Conditions and Sampling Strategies for Network Lasso
The network Lasso is a recently proposed convex optimization method for
machine learning from massive network structured datasets, i.e., big data over
networks. It is a variant of the well-known least absolute shrinkage and
selection operator (Lasso), which is underlying many methods in learning and
signal processing involving sparse models. Highly scalable implementations of
the network Lasso can be obtained by state-of-the art proximal methods, e.g.,
the alternating direction method of multipliers (ADMM). By generalizing the
concept of the compatibility condition put forward by van de Geer and Buehlmann
as a powerful tool for the analysis of plain Lasso, we derive a sufficient
condition, i.e., the network compatibility condition, on the underlying network
topology such that network Lasso accurately learns a clustered underlying graph
signal. This network compatibility condition relates the location of the
sampled nodes with the clustering structure of the network. In particular, the
NCC informs the choice of which nodes to sample, or in machine learning terms,
which data points provide most information if labeled.Comment: nominated as student paper award finalist at Asilomar 2017. arXiv
admin note: substantial text overlap with arXiv:1704.0210
- …