6,046 research outputs found

    Effect of wood aging on wine mineral composition and 87Sr/86Sr isotopic ratio

    Get PDF
    The evolution of mineral composition and wine strontium isotopic ratio 87Sr/86Sr (Sr IR) during wood aging were investigated. A red wine was aged in stainless steel tanks with French oak staves (Quercus sessiliflora Salisb.), with three industrial scale replicates. Sampling was carried out after 30, 60, and 90 days of aging, and the wines were evaluated in terms of general analysis, phenolic composition, total polysaccharides, multielement composition, and Sr IR. Li, Be, Mg, Al, Sc, Ti, V, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Rb, Sr, Y, Zr, Mo, Sb, Cs, Ba, Pr, Nd, Sm, Eu, Dy, Ho, Er, Yb, Lu, Tl, and Pb elements and 87Sr/86Sr were determined by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS) and Na, K, Ca, and Fe by flame atomic absorption spectrometry (FAAS). Two-way ANOVA was applied to assess wood aging and time effect on Sr IR and mineral composition. Wood aging resulted in significantly higher concentrations of Mg, V, Co, Ni, and Sr. At the end of the aging period, wine exhibited statistically identical Sr IR compared to control. Study suggests that wood aging does not affect 87Sr/86Sr, not precluding the use of this parameter for wine traceability purposesinfo:eu-repo/semantics/publishedVersio

    Three-dimensional flow structure and bed morphology in large elongate meander loops with different outer bank roughness characteristics

    Get PDF
    © 2016. American Geophysical Union. All Rights Reserved. Few studies have examined the three-dimensional flow structure and bed morphology within elongate loops of large meandering channels. The present study focuses on the spatial patterns of three-dimensional flow structure and bed morphology within two elongate meander loops and examines how differences in outer bank roughness influence near-bank flow characteristics. Three-dimensional velocities were measured during two different events—a near-bankfull flow and an overbank event. Detailed data on channel bathymetry and bed form geometry were obtained during a near-bankfull event. Flow structure within the loops is characterized by strong topographic steering by the point bar, by the development of helical motion associated with flow curvature, and by acceleration of flow where bedrock is exposed along the outer bank. Near-bank velocities during the overbank event are less than those for the near-bankfull flow, highlighting the strong influence of the point bar on redistribution of mass and momentum of the flow at subbankfull stages. Multiple outer bank pools are evident within the elongate meander loop with low outer bank roughness, but are not present in the loop with high outer bank roughness, which may reflect the influence of abundant large woody debris on near-bank velocity characteristics. The positions of pools within both loops can be linked to spatial variations in planform curvature. The findings indicate that flow structure and bed morphology in these large elongate loops is similar to that in small elongate loops, but differs somewhat from flow structure and bed morphology reported for experimental elongate loops

    Fourier-Laplace transforms and ruin probabilities

    Get PDF
    In this paper we use Fourier/Laplace transforms to evaluate numerically relevant probabilities in ruin theory as an application to insurance. The transform of a function is split in two: the real and the imaginary parts. We use an inversion formula based on the real part only, to get the original function. By using an appropriate algorithm to compute integrals and making use of the properties of these transforms we are able to compute numerically important quantities either in classical or non-classical ruin theory. As far as the classical model is concerned the problems considered have been widely studied. In what concerns the non-classical model, in particular models based on more general renewal risk processes, there is still a long way to go. In either case the approach presented is an easy method giving good approximations for reasonable values of the initial surplus. To show this we compute numerically ruin probabilities in the classical model and in a renewal risk process in which claim inter-arrival times have an Erlang(2) distribution and compare to exact figures where available. We also consider the computation of the probability and severity of ruin in the classical model.info:eu-repo/semantics/publishedVersio

    Impact of embryo technologies on secondary sex ratio in rabbit

    Full text link
    [EN] Increasing evidence indicates that assisted reproductive technologies (ARTs) disturb skewed sex-ratio and induce sex-dimorphic postnatal effects. Undoubtedly, the combination of multiple ovulation and embryo transfer (MOET) together with the use of vitrification technique (MOVET) is currently being used in breeding programs. However, since the first case of sex skewing reported in 1991, the accumulative and long-term transmission of skewed sex-ratio to future generations has not been thoroughly evaluated. Here we test as MOVET program induce a skewed sex ratio, and we consider skewed sex ratio transmission to future generations. To this end, we first evaluated the F1 generation, demonstrating that a MOVET program causes a severe imbalance skewed secondary sex ratio (SSR) towards male by 12%. This imbalanced persist after a second MOVET program (F2 generation), with an accumulative skewed SSR towards male by 25%. Finally, using a crossbred generation derived from crossing F1 males derived from a MOVET program with naturally-conceived (NC) females, we show that the imbalance skewed SRR persist. Bodyweight comparison between MOVET animals and NC counterparts revealed significant changes at birth, weaning and adulthood. However, there was a significant interaction between F2 MOVET animals and sex, demonstrating an apparent accumulative sex-dimorphic effect. At adulthood, MOVET derived males presented a lower body weight. In conclusion, we show that the MOVET program causes a direct, accumulative and long-term transmission of skewed SSR.This work was supported by the Ministry of Economy, Industry and Competitiveness (Research project: AGL2017-85162-C2-1-R) is acknowledged. X. Garcia-Dominguez was supported by a research grant from the Ministry of Economy, Industry and Competitiveness (BES-2015-072429). English text version was revised by N. Macowan English Language Service.Garcia-Dominguez, X.; Juarez, JD.; Vicente Antón, JS.; Marco-Jiménez, F. (2020). Impact of embryo technologies on secondary sex ratio in rabbit. Cryobiology. 97:60-65. https://doi.org/10.1016/j.cryobiol.2020.10.008S606597Auroux, M., Cerutti, I., Ducot, B., & Loeuillet, A. (2004). Is embryo-cryopreservation really neutral? Reproductive Toxicology, 18(6), 813-818. doi:10.1016/j.reprotox.2004.04.010Avery, B., Madison, V., & Greve, T. (1991). Sex and development in bovine in-vitro fertilized embryos. Theriogenology, 35(5), 953-963. doi:10.1016/0093-691x(91)90306-xBermejo-Alvarez, P., Rizos, D., Rath, D., Lonergan, P., & Gutierrez-Adan, A. (2010). Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts. Proceedings of the National Academy of Sciences, 107(8), 3394-3399. doi:10.1073/pnas.0913843107Bermejo-Álvarez, P., Rizos, D., Rath, D., Lonergan, P., & Gutierrez-Adan, A. (2008). Epigenetic differences between male and female bovine blastocysts produced in vitro. Physiological Genomics, 32(2), 264-272. doi:10.1152/physiolgenomics.00234.2007Bermejo-Alvarez, P., Rizos, D., Lonergan, P., & Gutierrez-Adan, A. (2011). Transcriptional sexual dimorphism during preimplantation embryo development and its consequences for developmental competence and adult health and disease. REPRODUCTION, 141(5), 563-570. doi:10.1530/rep-10-0482Besenfelder, U., & Brem, G. (1993). Laparoscopic embryo transfer in rabbits. Reproduction, 99(1), 53-56. doi:10.1530/jrf.0.0990053Bu, Z., Chen, Z.-J., Huang, G., Zhang, H., Wu, Q., Ma, Y., … Sun, Y. (2014). Live Birth Sex Ratio after In Vitro Fertilization and Embryo Transfer in China - An Analysis of 121,247 Babies from 18 Centers. PLoS ONE, 9(11), e113522. doi:10.1371/journal.pone.0113522Calle, A., Fernandez-Gonzalez, R., Ramos-Ibeas, P., Laguna-Barraza, R., Perez-Cerezales, S., Bermejo-Alvarez, P., … Gutierrez-Adan, A. (2012). Long-term and transgenerational effects of in vitro culture on mouse embryos. Theriogenology, 77(4), 785-793. doi:10.1016/j.theriogenology.2011.07.016Carvalho, R. V., Del Campo, M. R., Palasz, A. T., Plante, Y., & Mapletoft, R. J. (1996). Survival rates and sex ratio of bovine IVE embryos frozen at different developmental stages on day 7. Theriogenology, 45(2), 489-498. doi:10.1016/0093-691x(95)00385-lChen, M., Du, J., Zhao, J., Lv, H., Wang, Y., Chen, X., … Ling, X. (2017). The sex ratio of singleton and twin delivery offspring in assisted reproductive technology in China. Scientific Reports, 7(1). doi:10.1038/s41598-017-06152-9Donjacour, A., Liu, X., Lin, W., Simbulan, R., & Rinaudo, P. F. (2014). In Vitro Fertilization Affects Growth and Glucose Metabolism in a Sex-Specific Manner in an Outbred Mouse Model1. Biology of Reproduction, 90(4). doi:10.1095/biolreprod.113.113134Dulioust, E., Toyama, K., Busnel, M. C., Moutier, R., Carlier, M., Marchaland, C., … Auroux, M. (1995). Long-term effects of embryo freezing in mice. Proceedings of the National Academy of Sciences, 92(2), 589-593. doi:10.1073/pnas.92.2.589Feuer, S. K., Donjacour, A., Simbulan, R. K., Lin, W., Liu, X., Maltepe, E., & Rinaudo, P. F. (2014). Sexually Dimorphic Effect of In Vitro Fertilization (IVF) on Adult Mouse Fat and Liver Metabolomes. Endocrinology, 155(11), 4554-4567. doi:10.1210/en.2014-1465Feuer, S., & Rinaudo, P. (2016). From Embryos to Adults: A DOHaD Perspective on In Vitro Fertilization and Other Assisted Reproductive Technologies. Healthcare, 4(3), 51. doi:10.3390/healthcare4030051Feuer, S. K., & Rinaudo, P. F. (2017). Physiological, metabolic and transcriptional postnatal phenotypes ofin vitrofertilization (IVF) in the mouse. Journal of Developmental Origins of Health and Disease, 8(4), 403-410. doi:10.1017/s204017441700023xFleming, T. P., Watkins, A. J., Velazquez, M. A., Mathers, J. C., Prentice, A. M., Stephenson, J., … Godfrey, K. M. (2018). Origins of lifetime health around the time of conception: causes and consequences. The Lancet, 391(10132), 1842-1852. doi:10.1016/s0140-6736(18)30312-xGarcia-Dominguez, X., Marco-Jiménez, F., Peñaranda, D. S., Diretto, G., García-Carpintero, V., Cañizares, J., & Vicente, J. S. (2020). Long-term and transgenerational phenotypic, transcriptional and metabolic effects in rabbit males born following vitrified embryo transfer. Scientific Reports, 10(1). doi:10.1038/s41598-020-68195-9Garcia-Dominguez, X., Vicente, J. S., & Marco-Jiménez, F. (2020). Developmental Plasticity in Response to Embryo Cryopreservation: The Importance of the Vitrification Device in Rabbits. Animals, 10(5), 804. doi:10.3390/ani10050804Garcia-Dominguez, X., Vicente, J. S., Viudes-de-Castro, M. P., & Marco-Jiménez, F. (2020). Long-Term Effects Following Fresh/Vitrified Embryo Transfer Are Transmitted by Paternal Germline in a Large Size Rabbit Cohort. Animals, 10(8), 1272. doi:10.3390/ani10081272Gardner, D. K., Larman, M. G., & Thouas, G. A. (2010). Sex-related physiology of the preimplantation embryo. Molecular Human Reproduction, 16(8), 539-547. doi:10.1093/molehr/gaq042Gebert, C., Wrenzycki, C., Herrmann, D., Gröger, D., Thiel, J., Reinhardt, R., … Niemann, H. (2009). DNA methylation in the IGF2 intragenic DMR is re-established in a sex-specific manner in bovine blastocysts after somatic cloning. Genomics, 94(1), 63-69. doi:10.1016/j.ygeno.2009.03.004Gómez, E., Caamaño, J. N., Corrales, F. J., Díez, C., Correia-Álvarez, E., Martín, D., … Muñoz, M. (2013). Embryonic Sex Induces Differential Expression of Proteins in Bovine Uterine Fluid. Journal of Proteome Research, 12(3), 1199-1210. doi:10.1021/pr300845eGutiérrez-Adán, A., Granados, J., Pintado, B., & De La Fuente, J. (2001). Influence of glucose on the sex ratio of bovine IVM/IVF embryos cultured in vitro. Reproduction, Fertility and Development, 13(6), 361. doi:10.1071/rd00039Kobayashi, S., Isotani, A., Mise, N., Yamamoto, M., Fujihara, Y., Kaseda, K., … Okabe, M. (2006). Comparison of Gene Expression in Male and Female Mouse Blastocysts Revealed Imprinting of the X-Linked Gene, Rhox5/Pem, at Preimplantation Stages. Current Biology, 16(2), 166-172. doi:10.1016/j.cub.2005.11.071Laguna-Barraza, R., Bermejo-Álvarez, P., Ramos-Ibeas, P., de Frutos, C., López-Cardona, A. P., Calle, A., … Gutierrez-Adan, A. (2013). Sex-specific embryonic origin of postnatal phenotypic variability. Reproduction, Fertility and Development, 25(1), 38. doi:10.1071/rd12262Leibo, S. P., & Sztein, J. M. (2019). Cryopreservation of mammalian embryos: Derivation of a method. Cryobiology, 86, 1-9. doi:10.1016/j.cryobiol.2019.01.007Leme, L. O., Carvalho, J. O., Franco, M. M., & Dode, M. A. N. (2020). Effect of sex on cryotolerance of bovine embryos produced in vitro. Theriogenology, 141, 219-227. doi:10.1016/j.theriogenology.2019.05.002Lin, P.-Y., Huang, F.-J., Kung, F.-T., Wang, L.-J., Chang, S. Y., & Lan, K.-C. (2009). Comparison of the offspring sex ratio between fresh and vitrification-thawed blastocyst transfer. Fertility and Sterility, 92(5), 1764-1766. doi:10.1016/j.fertnstert.2009.05.011Litzky, J. F., Boulet, S. L., Esfandiari, N., Zhang, Y., Kissin, D. M., Theiler, R. N., & Marsit, C. J. (2018). Effect of frozen/thawed embryo transfer on birthweight, macrosomia, and low birthweight rates in US singleton infants. American Journal of Obstetrics and Gynecology, 218(4), 433.e1-433.e10. doi:10.1016/j.ajog.2017.12.223Maalouf, W. E., Mincheva, M. N., Campbell, B. K., & Hardy, I. C. W. (2014). Effects of assisted reproductive technologies on human sex ratio at birth. Fertility and Sterility, 101(5), 1321-1325. doi:10.1016/j.fertnstert.2014.01.041Martı́nez, A. ., Valcárcel, A., de las Heras, M. ., de Matos, D. ., Furnus, C., & Brogliatti, G. (2002). Vitrification of in vitro produced bovine embryos: in vitro and in vivo evaluations. Animal Reproduction Science, 73(1-2), 11-21. doi:10.1016/s0378-4320(02)00121-5Milki, A. A., Jun, S. H., Hinckley, M. D., Westphal, L. W., Giudice, L. C., & Behr, B. (2003). Journal of Assisted Reproduction and Genetics, 20(8), 323-326. doi:10.1023/a:1024861624805Muñoz, M., Gatien, J., Salvetti, P., Martín-González, D., Carrocera, S., & Gómez, E. (2020). Nuclear magnetic resonance analysis of female and male pre-hatching embryo metabolites at the embryo-maternal interface. Metabolomics, 16(4). doi:10.1007/s11306-020-01672-4Narvaez, J. L., Chang, J., Boulet, S. L., Davies, M. J., & Kissin, D. M. (2019). Trends and correlates of the sex distribution among U.S. assisted reproductive technology births. Fertility and Sterility, 112(2), 305-314. doi:10.1016/j.fertnstert.2019.03.034Nedambale, T. L., Dinnyés, A., Yang, X., & Tian, X. C. (2004). Bovine Blastocyst Development In Vitro: Timing, Sex, and Viability Following Vitrification1. Biology of Reproduction, 71(5), 1671-1676. doi:10.1095/biolreprod.104.027987Ng, K. Y. B., Mingels, R., Morgan, H., Macklon, N., & Cheong, Y. (2017). In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Human Reproduction Update, 24(1), 15-34. doi:10.1093/humupd/dmx028Roseboom, T. J. (2018). Developmental plasticity and its relevance to assisted human reproduction. Human Reproduction, 33(4), 546-552. doi:10.1093/humrep/dey034Sparks, A. (2015). Human Embryo Cryopreservation—Methods, Timing, and other Considerations for Optimizing an Embryo Cryopreservation Program. Seminars in Reproductive Medicine, 33(02), 128-144. doi:10.1055/s-0035-1546826Supramaniam, P. R., Mittal, M., Ohuma, E. O., Lim, L. N., McVeigh, E., Granne, I., & Becker, C. M. (2019). Secondary sex ratio in assisted reproduction: an analysis of 1 376 454 treatment cycles performed in the UK. Human Reproduction Open, 2019(4). doi:10.1093/hropen/hoz020Tan, K., An, L., Miao, K., Ren, L., Hou, Z., Tao, L., … Tian, J. (2016). Impaired imprinted X chromosome inactivation is responsible for the skewed sex ratio following in vitro fertilization. Proceedings of the National Academy of Sciences, 113(12), 3197-3202. doi:10.1073/pnas.1523538113Tan, K., Wang, Z., Zhang, Z., An, L., & Tian, J. (2016). IVF affects embryonic development in a sex-biased manner in mice. REPRODUCTION, 151(4), 443-453. doi:10.1530/rep-15-0588Tarín, J. J., García-Pérez, M. A., Hermenegildo, C., & Cano, A. (2014). Changes in sex ratio from fertilization to birth in assisted-reproductive-treatment cycles. Reproductive Biology and Endocrinology, 12(1), 56. doi:10.1186/1477-7827-12-56Torner, E., Bussalleu, E., Briz, M. D., Yeste, M., & Bonet, S. (2014). Embryo development and sex ratio of in vitro-produced porcine embryos are affected by the energy substrate and hyaluronic acid added to the culture medium. Reproduction, Fertility and Development, 26(4), 570. doi:10.1071/rd13004Valdivia, R. P. A., Kunieda, T., Azuma, S., & Toyoda, Y. (1993). PCR sexing and developmental rate differences in preimplantation mouse embryos fertilized and cultured in vitro. Molecular Reproduction and Development, 35(2), 121-126. doi:10.1002/mrd.1080350204Ventura-Juncá, P., Irarrázaval, I., Rolle, A. J., Gutiérrez, J. I., Moreno, R. D., & Santos, M. J. (2015). In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biological Research, 48(1). doi:10.1186/s40659-015-0059-yVicente, J.-S., Viudes-de-Castro, M.-P., & García, M.-L. (1999). In vivo survival rate of rabbit morulae after vitrification in a medium without serum protein. Reproduction Nutrition Development, 39(5-6), 657-662. doi:10.1051/rnd:19990511Viudes-de-Castro, M. P., Marco-Jiménez, F., Cedano-Castro, J. I., & Vicente, J. S. (2017). Effect of corifollitropin alfa supplemented with or without LH on ovarian stimulation and embryo viability in rabbit. Theriogenology, 98, 68-74. doi:10.1016/j.theriogenology.2017.05.005Wikland, M., Hardarson, T., Hillensjo, T., Westin, C., Westlander, G., Wood, M., & Wennerholm, U. B. (2010). Obstetric outcomes after transfer of vitrified blastocysts. Human Reproduction, 25(7), 1699-1707. doi:10.1093/humrep/deq117Wrenzycki, C., Lucas-Hahn, A., Herrmann, D., Lemme, E., Korsawe, K., & Niemann, H. (2002). In Vitro Production and Nuclear Transfer Affect Dosage Compensation of the X-Linked Gene Transcripts G6PD, PGK, and Xist in Preimplantation Bovine Embryos1. Biology of Reproduction, 66(1), 127-134. doi:10.1095/biolreprod66.1.127Zacchini, F., Sampino, S., Stankiewicz, A. M., Haaf, T., & Ptak, G. E. (2019). Assessing the epigenetic risks of assisted reproductive technologies: a way forward. The International Journal of Developmental Biology, 63(3-4-5), 217-222. doi:10.1387/ijdb.180402g

    An integrated cryogenic optical modulator

    Full text link
    Integrated electrical and photonic circuits (PIC) operating at cryogenic temperatures are fundamental building blocks required to achieve scalable quantum computing, and cryogenic computing technologies. Optical interconnects offer better performance and thermal insulation than electrical wires and are imperative for true quantum communication. Silicon PICs have matured for room temperature applications but their cryogenic performance is limited by the absence of efficient low temperature electro-optic (EO) modulation. While detectors and lasers perform better at low temperature, cryogenic optical switching remains an unsolved challenge. Here we demonstrate EO switching and modulation from room temperature down to 4 K by using the Pockels effect in integrated barium titanate (BaTiO3)-based devices. We report the nonlinear optical (NLO) properties of BaTiO3 in a temperature range which has previously not been explored, showing an effective Pockels coefficient of 200 pm/V at 4 K. We demonstrate the largest EO bandwidth (30 GHz) of any cryogenic switch to date, ultra-low-power tuning which is 10^9 times more efficient than thermal tuning, and high-speed data modulation at 20 Gbps. Our results demonstrate a missing component for cryogenic PICs. It removes major roadblocks for the realisation of novel cryogenic-compatible systems in the field of quantum computing and supercomputing, and for interfacing those systems with the real world at room-temperature

    Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides

    Get PDF
    Recent molecular-dynamics simulations have suggested that the arginine-rich HIV Tat peptides translocate by destabilizing and inducing transient pores in phospholipid bilayers. In this pathway for peptide translocation, Arg residues play a fundamental role not only in the binding of the peptide to the surface of the membrane, but also in the destabilization and nucleation of transient pores across the bilayer. Here we present a molecular-dynamics simulation of a peptide composed of nine Args (Arg-9) that shows that this peptide follows the same translocation pathway previously found for the Tat peptide. We test experimentally the hypothesis that transient pores open by measuring ionic currents across phospholipid bilayers and cell membranes through the pores induced by Arg-9 peptides. We find that Arg-9 peptides, in the presence of an electrostatic potential gradient, induce ionic currents across planar phospholipid bilayers, as well as in cultured osteosarcoma cells and human smooth muscle cells. Our results suggest that the mechanism of action of Arg-9 peptides involves the creation of transient pores in lipid bilayers and cell membranes.Facultad de Ciencias Exacta

    Health Vulnerability Model for Latinx Sexual and Gender Minorities: Typologies with Socioeconomic Stability, Health Care Access, and Social Characteristics Indicators

    Get PDF
    Vulnerability can undermine positive health outcomes and challenge healthcare services access. However, to date, vulnerable populations research has been limited by overly broad definitions, lack of clear indicators, and failure to explore subtypes of vulnerability. Informed by literature and theory, this analysis used a specific operationalization of health vulnerability to identify typologies among a sample of Latinx sexual and gender minorities. We analyzed baseline data from Latinx sexual and gender minorities (N = 186) recruited for a community-based HIV intervention. We performed latent class analysis to operationalize vulnerability using eight socioeconomic stability, health care access, and social characteristics indicators. We identified three typologies of vulnerability from our sample: Low Education and High Social Support (63.4% of sample), High Education and Year-round Employment (18.8%), and High Education and High Discrimination (17.7%). Using specific indicators produced more nuanced vulnerability typologies which, after further testing, can assist in informing tailored health promotion interventions
    corecore