4 research outputs found

    Water-uptake properties of a fish protein-based superabsorbent hydrogel chemically modified with ethanol

    No full text
    <div><p>Abstract Hydrophilic polymers can form hydrogels, which are able to absorb and retain as much water as one hundred times their weight. Polymers based on natural products have been drawing attention since they are biocompatible, biodegradable and nontoxic. The aims of this study were to produce and to characterize a biopolymer with superabsorbent properties from fish protein isolates. Hydrogels were produced from protein isolates from Whitemouth croaker processing wastes chemically modified. The extension of change in lysine residues, kinetics in water-uptake capacity, pH effect, ionic strength over the absorption of water by hydrogels and the behavior of the biopolymer when subject to successive hydration and dehydrations were investigated. Results showed that acid modified protein without ethanol treatment reached a maximum absorption of 103.25 gwater/gdry gel, while the same sample modified with ethanol reached 216.05 gwater/gdry gel.</p></div

    Water-uptake properties of a fish protein-based superabsorbent hydrogel chemically modified with ethanol

    No full text
    <div><p>Abstract Hydrophilic polymers can form hydrogels, which are able to absorb and retain as much water as one hundred times their weight. Polymers based on natural products have been drawing attention since they are biocompatible, biodegradable and nontoxic. The aims of this study were to produce and to characterize a biopolymer with superabsorbent properties from fish protein isolates. Hydrogels were produced from protein isolates from Whitemouth croaker processing wastes chemically modified. The extension of change in lysine residues, kinetics in water-uptake capacity, pH effect, ionic strength over the absorption of water by hydrogels and the behavior of the biopolymer when subject to successive hydration and dehydrations were investigated. Results showed that acid modified protein without ethanol treatment reached a maximum absorption of 103.25 gwater/gdry gel, while the same sample modified with ethanol reached 216.05 gwater/gdry gel.</p></div

    New technologies from the bioworld: selection of biopolymer-producing microalgae

    No full text
    <div><p>Abstract Microalgae are studied because of their biotechnological potential. The growth of microalgae aims at obtaining natural compounds. Due to the large amount of accumulated polymer waste, one of the solutions is the use of biodegradable polymers. The objective of this work was to select biopolymer-producing microalgae and to study the cell growth phase in which maximum production occurs. Microalgae Cyanobium sp., Nostoc ellipsosporum, Spirulina sp. LEB 18 and Synechococcus nidulans were studied. The growth was carried out in closed 2 L photobioreactors kept in a chamber thermostated at 30 °C with an illuminance of 41.6 μmolphotons.m-2.s-1 and a 12 h light/dark photoperiod. The biopolymers were extracted at times of 5, 10, 15, 20 and 25 d. The microalgae that had the highest yields were Nostoc ellipsosporum and Spirulina sp. LEB 18 with crude biopolymer efficiency of 19.27 and 20.62% in 10 and 15 d, respectively, at the maximum cell growth phase.</p></div

    Microalgae biopeptides applied in nanofibers for the development of active packaging

    No full text
    <div><p>Abstract This study was conducted to develop PCL nanofibers with the incorporation of microalgae biopeptides and to evaluate the stability of chicken meat cuts during storage. PCL and PCL/biopeptides nanofibers were formed by electrospinning method, and the diameters obtained were 404 and 438 nm, respectively. The tensile strength, elongation, melting temperature and thermal stability of biopeptide-added PCL nanofibers were 0.245 MPa, 64%, 56.8 °C and 318 °C, respectively. PCL/biopeptide nanofibers showed a reducing power of 0.182, inhibition of 22.6% and 12.4% for DPPH and ABTS radicals, respectively. Chicken meat cuts covered by the PCL/biopeptide nanofibers showed 0.98 mgMDA∙kg-1 and 25.8 mgN∙100g-1 for TBARS and N-BVT analysis, respectively. Thus, the PCL/biopeptide nanofibers provided greater stability to the product and control of oxidative processes ensuring the product quality maintenance during the 12 d of storage.</p></div
    corecore