8 research outputs found

    Design and evaluation of an aerodynamic focusing micro-well aerosol collector

    No full text
    <p>Aerosol sampling and identification is vital for the assessment and control of particulate matter pollution, airborne pathogens, allergens, and toxins and their effect on air quality, human health, and climate change. <i>In situ</i> analysis of chemical and biological airborne components of aerosols on a conventional filter is challenging due to dilute samples in a large collection region. We present the design and evaluation of a micro-well (µ-well) aerosol collector for the assessment of airborne particulate matter (PM) in the 0.5–3 µm size range. The design minimizes particle collection areas allowing for <i>in situ</i> optical analysis and provides an increased limit of detection for liquid-based assays due to the high concentrations of analytes in the elution/analysis volume. The design of the collector is guided by computational fluid dynamics (CFD) modeling; it combines an aerodynamic concentrator inlet that focuses the aspirated aerosol into a narrow beam and a µ-well collector that limits the particle collection area to the µ-well volume. The optimization of the collector geometry and the operational conditions result in high concentrations of collected PM in the submillimeter region inside the µ-well. Collection efficiency experiments are performed in the aerosol chamber using fluorescent polystyrene microspheres to determine the performance of the collector as a function of particle size and sampling flow rate. The collector has the maximum collection efficiency of about 75% for 1 µm particles for the flow rate of 1 slpm. Particles bigger than 1 µm have lower collection efficiencies because of particle bounce and particle loss in the aerodynamic focusing inlet. Collected samples can be eluted from the device using standard pipettes, with an elution volume of 10–20 µL. The transparent collection substrate and the distinct collection region, independent of particle size, allows for <i>in situ</i> optical analysis of the collected PM.</p> <p>© 2017 American Association for Aerosol Research</p

    Fluorescent Features and Applicable Biosensing of a Core–Shell Ag Nanocluster Shielded by a DNA Tetrahedral Nanocage

    No full text
    The DNA frame structure as a natural shell to stably shield the sequence-templated Ag nanocluster core (csAgNC) is intriguing yet challenging for applicable fluorescence biosensing, for which the elaborate programming of a cluster scaffold inside a DNA-based cage to guide csAgNC nucleation might be crucial. Herein, we report the first design of a symmetric tetrahedral DNA nanocage (TDC) that was self-assembled in a one-pot process using a C-rich csAgNC template strand and four single strands. Inside the as-constructed soft TDC architecture, the template sequence was logically bridged from one side to another, not in the same face, thereby guiding the in situ synthesis of emissive csAgNC. Because of the strong electron-repulsive capability of the negatively charged TDC, the as-formed csAgNC displayed significantly improved fluorescence stability and superb spectral behavior. By incorporating the recognizable modules of targeted microRNAs (miRNAs) in one vertex of the TDC, an updated TDC (uTDC) biosensing platform was established via the photoinduced electron transfer effect between the emissive csAgNC reporter and hemin/G-quadruplex (hG4) conjugate. Because of the target-interrupted csAgNC switching in three states with the spatial proximity and separation to hG4, an “on–off–on” fluorescing signal response was executed, thus achieving a wide linear range to miRNAs and a limit of detection down to picomoles. Without complicated chemical modifications, this simpler and more cost-effective strategy offered accurate cell imaging of miRNAs, further suggesting possible therapeutic applications

    Evaluation of micro-well collector for capture and analysis of aerosolized <i>Bacillus subtilis</i> spores

    No full text
    <div><p>Bioaerosol sampling and identification are vital for the assessment and control of airborne pathogens, allergens, and toxins. In-situ analysis of chemical and biological particulate matter can significantly reduce the costs associated with sample preservation, transport, and analysis. The analysis of conventional filters is challenging, due to dilute samples in large collection regions. A low-cost cartridge for collection and analysis of aerosols is developed for use in epidemiological studies and personal exposure assessments. The cartridge collects aerosol samples in a micro-well which reduces particles losses due to the bounce and does not require any coating. The confined particle collection area (d<sub>well</sub>~1.4 mm) allows reducing the elution volume for subsequent analysis. The performance of the cartridge is validated in laboratory studies using aerosolized bacterial spores (<i>Bacillus subtilis</i>). Colony forming unit analysis is used for bacterial spore enumeration. Cartridge collection efficiency is evaluated by comparison with the reference filters and found to be consistent with tested flow rates. Sample recovery for the pipette elution is ~80%. Due to the high density of the collected sample, the cartridge is compatible with in-situ spectroscopic analysis and sample elution into the 10–20 μl liquid volume providing a significant increase in sample concentration for subsequent analysis.</p></div
    corecore