113 research outputs found

    The sub-Hamming distance between different biometric fingerprints.

    No full text
    The sub-Hamming distance between different biometric fingerprints.</p

    Face image extracted based on HOG algorithm.

    No full text
    The fundamental technology behind bitcoin, known as blockchain, has been studied and used in a variety of industries especially in finance. The security of blockchain is extremely important as it will affects the assets of the clients as well as it is the lifeline feature of the entire system that needs to be guaranteed. Currently, there is a lack of a methodical approach to guarantee the security and dependability of the private key during its whole life. Furthermore, there is no quick, easy, or secure way to create the encryption key. A biometric-based private key encryption and management framework (BPKEM) for blockchain is proposed not only to solve the private key lifecycle manag- ement problem, but also it maintains compatibility with existing blockchain systems. For the problem of private key encryption, a biometric-based stable key generation method is proposed. By using the relative invariance between facial and fingerprint feature points, this measure can convert feature points into stable and distinguishable descriptors, then using a reusable fuzzy extractor to create a stable key. The correct- ness and efficiency of the newly proposed biometric-based blockchain encryption tech- nique in this paper has been validated in the experiments.</div

    Security properties comparison.

    No full text
    The fundamental technology behind bitcoin, known as blockchain, has been studied and used in a variety of industries especially in finance. The security of blockchain is extremely important as it will affects the assets of the clients as well as it is the lifeline feature of the entire system that needs to be guaranteed. Currently, there is a lack of a methodical approach to guarantee the security and dependability of the private key during its whole life. Furthermore, there is no quick, easy, or secure way to create the encryption key. A biometric-based private key encryption and management framework (BPKEM) for blockchain is proposed not only to solve the private key lifecycle manag- ement problem, but also it maintains compatibility with existing blockchain systems. For the problem of private key encryption, a biometric-based stable key generation method is proposed. By using the relative invariance between facial and fingerprint feature points, this measure can convert feature points into stable and distinguishable descriptors, then using a reusable fuzzy extractor to create a stable key. The correct- ness and efficiency of the newly proposed biometric-based blockchain encryption tech- nique in this paper has been validated in the experiments.</div

    Fingerprint image feature point extraction results.

    No full text
    Fingerprint image feature point extraction results.</p

    Characteristic point distribution after screening.

    No full text
    Characteristic point distribution after screening.</p

    The fuzzy extractor scheme.

    No full text
    The fundamental technology behind bitcoin, known as blockchain, has been studied and used in a variety of industries especially in finance. The security of blockchain is extremely important as it will affects the assets of the clients as well as it is the lifeline feature of the entire system that needs to be guaranteed. Currently, there is a lack of a methodical approach to guarantee the security and dependability of the private key during its whole life. Furthermore, there is no quick, easy, or secure way to create the encryption key. A biometric-based private key encryption and management framework (BPKEM) for blockchain is proposed not only to solve the private key lifecycle manag- ement problem, but also it maintains compatibility with existing blockchain systems. For the problem of private key encryption, a biometric-based stable key generation method is proposed. By using the relative invariance between facial and fingerprint feature points, this measure can convert feature points into stable and distinguishable descriptors, then using a reusable fuzzy extractor to create a stable key. The correct- ness and efficiency of the newly proposed biometric-based blockchain encryption tech- nique in this paper has been validated in the experiments.</div

    Face feature point types.

    No full text
    The fundamental technology behind bitcoin, known as blockchain, has been studied and used in a variety of industries especially in finance. The security of blockchain is extremely important as it will affects the assets of the clients as well as it is the lifeline feature of the entire system that needs to be guaranteed. Currently, there is a lack of a methodical approach to guarantee the security and dependability of the private key during its whole life. Furthermore, there is no quick, easy, or secure way to create the encryption key. A biometric-based private key encryption and management framework (BPKEM) for blockchain is proposed not only to solve the private key lifecycle manag- ement problem, but also it maintains compatibility with existing blockchain systems. For the problem of private key encryption, a biometric-based stable key generation method is proposed. By using the relative invariance between facial and fingerprint feature points, this measure can convert feature points into stable and distinguishable descriptors, then using a reusable fuzzy extractor to create a stable key. The correct- ness and efficiency of the newly proposed biometric-based blockchain encryption tech- nique in this paper has been validated in the experiments.</div

    Integer lattice, generating space sets based on discrete basis vectors.

    No full text
    Integer lattice, generating space sets based on discrete basis vectors.</p

    The sub-Hamming distance between different biometric fingerprints.

    No full text
    The sub-Hamming distance between different biometric fingerprints.</p
    corecore