77 research outputs found

    Transition metal oxides for high performance sodium ion battery anodes

    Get PDF
    Sodium-ion batteries (SIBs) are attracting considerable attention with expectation of replacing lithium-ion batteries (LIBs) in large-scale energy storage systems (ESSs). To explore high performance anode materials for SIBs is highly desired subject to the current anode research mainly limited to carbonaceous materials. In this study, a series of transition metal oxides (TMOs) is successfully demonstrated as anodes for SIBs for the first time. The sodium uptake/extract is confirmed in the way of reversible conversion reaction. The pseudocapacitance-type behavior is also observed in the contribution of sodium capacity. For Fe2O3anode, a reversible capacity of 386 mAh g-1at 100 mA g-1 is achieved over 200 cycles; as high as 233 mAhg-1is sustained even cycling at a large current-density of 5 A g-1

    Multiple Unpinned Dirac Points in Group-Va Single-layers with Phosphorene Structure

    Full text link
    Emergent Dirac fermion states underlie many intriguing properties of graphene, and the search for them constitute one strong motivation to explore two-dimensional (2D) allotropes of other elements. Phosphorene, the ultrathin layers of black phosphorous, has been a subject of intense investigations recently, and it was found that other group-Va elements could also form 2D layers with similar puckered lattice structure. Here, by a close examination of their electronic band structure evolution, we discover two types of Dirac fermion states emerging in the low-energy spectrum. One pair of (type-I) Dirac points is sitting on high-symmetry lines, while two pairs of (type-II) Dirac points are located at generic kk-points, with different anisotropic dispersions determined by the reduced symmetries at their locations. Such fully-unpinned (type-II) 2D Dirac points are discovered for the first time. In the absence of spin-orbit coupling, we find that each Dirac node is protected by the sublattice symmetry from gap opening, which is in turn ensured by any one of three point group symmetries. The spin-orbit coupling generally gaps the Dirac nodes, and for the type-I case, this drives the system into a quantum spin Hall insulator phase. We suggest possible ways to realize the unpinned Dirac points in strained phosphorene.Comment: 30 pages, 6 figure

    Interface Engineering of Air Electrocatalysts for Rechargeable Zinc-Air Batteries

    Get PDF
    In the face of high cost and insufficient energy density of current lithium ion batteries, aqueous rechargeable Zn-air batteries with the advantages of low cost, environmental benignity, safety and high energy density are spotlighted in recent years. The practical application of Zn-air batteries, however, is severely restricted by the high overpotential, which is associated with the inherent sluggish kinetics of oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) of air electrocatalysts. Recently, engineering heterostructured/hybrid electrocatalysts by modulating the interface chemistry has been demonstrated as an effective strategy to improve the catalytic performance. Basically, there occur significant electronic effect, geometric effect, coordination effect, synergistic effect, and confinement effect at the heterostructure interface, which intensely affect electrocatalysts’ performance in terms of intrinsic activity, active site density and durability. In this review, the recent progress on development of heterostructured air electrocatalysts by interface engineering is summarized. Particularly, the potential relationship between interface chemistry and oxygen electrocatalysis kinetics is bridged and outlined. This review would provide a comprehensive and in-depth understanding of the crucial role of the well-defined interfaces towards fast oxygen electrocatalysis, and would offer a solid scientific basis for the rational design of efficient heterostructured air electrocatalysts and beyond

    A Robust, Highly Reversible, Mixed Conducting Sodium Metal Anode

    Get PDF
    Sodium metal anode holds great promise in pursuing high-energy and sustainable rechargeable batteries, but severely suffers from fatal dendrite growth accompanied with huge volume change. Herein, a robust mixed conducting sodium metal anode is designed through incorporating NaSICON-type solid Na-ion conductor into bulk Na. A fast and continuous pathway for simultaneous transportation of electrons and Na+ is established throughout the composite anode. The intimate contact between Na-ion conducting phase and Na metallic phase constructs abundant two-phase boundaries for fast redox reactions. Further, the compact configuration of the composite anode substantially protects Na metal from being corroded by liquid organic electrolyte for the minimization of side reactions. Benefiting from the unique configuration, the composite anode shows highly reversible and durable Na plating/stripping behavior. The symmetric cells exhibit ultralong lifespan for over 700 h at 1 mA cm−2 with a high capacity of 5 mAh cm−2 and outstanding rate capability up to 8 mA cm−2 in the carbonate electrolyte. Full cells with Na3V2(PO4)3/C cathode demonstrate impressive cycling stability (capacity decay of 0.012% per cycle) and low charge/discharge polarization as well. This work provides new insights into rational design and development of robust sodium metal anode through an architecture engineering strategy for advanced rechargeable sodium batteries

    Porous Bilayer Electrode‐Guided Gas Diffusion for Enhanced CO 2 Electrochemical Reduction

    Get PDF
    Comparing with the massive efforts in developing innovative catalyst materials system and technologies, structural design of cells has attracted less attention on the road toward high‐performance electrochemical CO2 reduction reaction (eCO2RR). Herein, a hybrid gas diffusion electrode‐based reaction cell is proposed using highly porous carbon paper (CP) and graphene aerogels (GAs), which is expected to offer directional diffusion of gas molecules onto the catalyst bed, to sustain a high performance in CO2 conversion. The above‐mentioned hypothesis is supported by the experimental and simulation results, which show that the CP + GA combined configuration increases the Faraday efficiency (FE) from ≈60% to over 94% toward carbon monoxide (CO) and formate production compared with a CP only cell with Cu2O as the catalyst. It also suppresses the undesirable side reaction–hydrogen evolution over 65 times than the conventional H‐type cell (H‐cell). By combining with advanced catalysts with high selectivity, a 100% FE of the cell with a high current density can be realized. The described strategy sheds an extra light on future development of eCO2RR with a structural design of cell‐enabled high CO2 conversion

    Conformally Anodizing Hierarchical Structure in a Deformed Tube towards Energy-saving Liquid Transportation

    Get PDF
    The creation of drag-reducing surfaces in deformed tubes is of vital importance to thermal management, energy, and environmental applications. However, it remains a great challenge to tailor the surface structure and wettability inside the deformed tubes of slim and complicated feature. Here, we describe an electrochemical anodization strategy to achieve uniform and superhydrophobic coating of TiO2 nanotube arrays throughout the inner surface in deformed/bend titanium tubes. Guided by a hybrid carbon fibre cathode, conformal electric field can be generated to adaptatively fit the complex geometries in the deformed tube, where the structural design with rigid insulating beads can self-stabilize the hybrid cathode at the coaxial position of the tube with the electrolyte flow. As a result, we obtain a superhydrophobic coating with a water contact angle of 157° and contact angle hysteresis of less than 10°. Substantial drag reduction can be realised with an overall reduction up to 25.8 % for the anodized U-shaped tube. Furthermore, we demonstrate to spatially coat tubes with complex geometries, to achieve energy-saving liquid transportation. This facile coating strategy has great implications in liquid transport processes with the user-friendly approach to engineer surface regardless of the deformation of tube/pipe

    The Relationship Between Cognitive Dysfunction and Symptom Dimensions Across Schizophrenia, Bipolar Disorder, and Major Depressive Disorder

    Get PDF
    Background: Cognitive dysfunction is considered a core feature among schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD). Despite abundant literature comparing cognitive dysfunction among these disorders, the relationship between cognitive dysfunction and symptom dimensions remains unclear. The study aims are a) to identify the factor structure of the BPRS-18 and b) to examine the relationship between symptom domains and cognitive function across SZ, BD, and MDD.Methods: A total of 716 participants [262 with SZ, 104 with BD, 101 with MDD, and 249 healthy controls (HC)] were included in the study. One hundred eighty participants (59 with SZ, 23 with BD, 24 with MDD, and 74 HC) completed the MATRICS Consensus Cognitive Battery (MCCB), and 507 participants (85 with SZ, 89 with BD, 90 with MDD, and 243 HC) completed the Wisconsin Card Sorting Test (WCST). All patients completed the Brief Psychiatric Rating Scale (BPRS).Results: We identified five BPRS exploratory factor analysis (EFA) factors (“affective symptoms,” “psychosis,” “negative/disorganized symptoms,” “activation,” and “noncooperation”) and found cognitive dysfunction in all of the participant groups with psychiatric disorders. Negative/disorganized symptoms were the most strongly associated with cognitive dysfunctions across SZ, BD, and MDD.Conclusions: Our findings suggest that cognitive dysfunction severity relates to the negative/disorganized symptom domain across SZ, BD, and MDD, and negative/disorganized symptoms may be an important target for effective cognitive remediation in SZ, BD, and MDD

    Changes in the structural and optical properties of CeO2 nanocrystalline films: Effect of film thickness

    No full text
    Jiang Y, Bahlawane N. Changes in the structural and optical properties of CeO2 nanocrystalline films: Effect of film thickness. JOURNAL OF ALLOYS AND COMPOUNDS. 2009;485(1-2):L52-L55.In this paper, nanocrystalline cerium dioxide (CeO2) thin films with thicknesses of 41-334 nm were grown on glass substrates at 450 degrees C by pulsed spray-evaporation chemical vapor deposition (PSE-CVD). Through changing the film thickness, the texture and the band gap energy of CeO2 were altered in a wide range, which implies promising applications in microelectronics, optoelectronics and photocatalysis. X-ray diffraction (XRD) shows that all films grown by this process crystallize in the cubic structure, however, evident changes in the preferred orientation were found when increasing the film thickness. Atomic force micrographs of a 334-nm-thick film indicate a very uniform surface morphology composed of a sub-micrometer sized taper-like structure. Optical measurements show high transparency for all films and reveal a systematic change in the band gap energy with the film thickness. (C) 2009 Elsevier B.V. All rights reserved

    The growth of nanoscale ZnO films by pulsed-spray evaporation chemical vapor deposition and their structural, electric and optical properties

    No full text
    Jiang Y, Bahlawane N. The growth of nanoscale ZnO films by pulsed-spray evaporation chemical vapor deposition and their structural, electric and optical properties. Thin Solid Films. 2010;519(1):284-288.Great interest in nanoscale thin films (sub-100 nm) has been stimulated by the developing demands of functional devices. In this paper, nanoscale zinc oxide (ZnO) thin films were deposited on glass substrates at 300 degrees C by pulsed-spray evaporation chemical vapor deposition. Scanning electron micrographs indicate uniform surface morphologies composed of nanometer-sized spherical particles. The growth kinetics and growth mode are studied and the relationship between the film thickness and the electric properties with respect to the growth mode is interpreted. X-ray diffraction shows that all ZnO films grown by this process were crystallized in a hexagonal structure and highly oriented with their c-axes perpendicular to the plane of the substrate. Optical measurements show transparencies above 85% in the visible spectral range for all films. The absorbance in the UV spectral range respects well the Beer-Lambert law, enabling an accurate optical thickness measurement, and the absorption coefficient was measured for a selected wavelength. The measured band gap energies exhibit an almost constant value of 3.41 eV for all films with different thicknesses, which attributed to the thickness-independent crystallite size. (C) 2010 Elsevier B.V. All rights reserved
    corecore