20,952 research outputs found

    On the Inverse Problem Relative to Dynamics of the w Function

    Full text link
    In this paper we shall study the inverse problem relative to dynamics of the w function which is a special arithmetic function and shall get some results.Comment: 11 page

    Electron-Phonon Interactions for Optical Phonon Modes in Few-Layer Graphene

    Full text link
    We present a first-principles study of the electron-phonon (e-ph) interactions and their contributions to the linewidths for the optical phonon modes at Γ\Gamma and K in one to three-layer graphene. It is found that due to the interlayer coupling and the stacking geometry, the high-frequency optical phonon modes in few-layer graphene couple with different valence and conduction bands, giving rise to different e-ph interaction strengths for these modes. Some of the multilayer optical modes derived from the Γ\Gamma-E2gE_{2g} mode of monolayer graphene exhibit slightly higher frequencies and much reduced linewidths. In addition, the linewidths of K-A1A'_1 related modes in multilayers depend on the stacking pattern and decrease with increasing layer numbers.Comment: 6 pages,5 figures, submitted to PR

    An Agent-based Modelling Framework for Driving Policy Learning in Connected and Autonomous Vehicles

    Get PDF
    Due to the complexity of the natural world, a programmer cannot foresee all possible situations, a connected and autonomous vehicle (CAV) will face during its operation, and hence, CAVs will need to learn to make decisions autonomously. Due to the sensing of its surroundings and information exchanged with other vehicles and road infrastructure, a CAV will have access to large amounts of useful data. While different control algorithms have been proposed for CAVs, the benefits brought about by connectedness of autonomous vehicles to other vehicles and to the infrastructure, and its implications on policy learning has not been investigated in literature. This paper investigates a data driven driving policy learning framework through an agent-based modelling approaches. The contributions of the paper are two-fold. A dynamic programming framework is proposed for in-vehicle policy learning with and without connectivity to neighboring vehicles. The simulation results indicate that while a CAV can learn to make autonomous decisions, vehicle-to-vehicle (V2V) communication of information improves this capability. Furthermore, to overcome the limitations of sensing in a CAV, the paper proposes a novel concept for infrastructure-led policy learning and communication with autonomous vehicles. In infrastructure-led policy learning, road-side infrastructure senses and captures successful vehicle maneuvers and learns an optimal policy from those temporal sequences, and when a vehicle approaches the road-side unit, the policy is communicated to the CAV. Deep-imitation learning methodology is proposed to develop such an infrastructure-led policy learning framework

    SPSA-Based Tracking Method for Single-Channel-Receiver Array

    Get PDF
    A novel tracking method in the phased antenna array with a single-channel receiver for the moving signal source is presented in this paper. And the problems of the direction-of-arrival track and beamforming in the array system are converted to the power maximization of received signal in the free-interference conditions, which is different from the existing algorithms that maximize the signal to interference and noise ratio. The proposed tracking method reaches the global optimum rather than local by injecting the extra noise terms into the gradient estimation. The antenna beam can be steered to coincide with the direction of the moving source fast and accurately by perturbing the output of the phase shifters during motion, due to the high efficiency and easy implementation of the proposed beamforming algorithm based on the simultaneous perturbation stochastic approximation (SPSA). Computer simulations verify that the proposed tracking scheme is robust and effective

    Energy shift of the three-particle system in a finite volume

    Full text link
    Using the three-particle quantization condition recently obtained in the particle-dimer framework, the finite-volume energy shift of the two lowest three-particle scattering states is derived up to and including order L6L^{-6}. Furthermore, assuming that a stable dimer exists in the infinite volume, the shift for the lowest particle-dimer scattering state is obtained up to and including order L3L^{-3}. The result for the lowest three-particle state agrees with the results from the literature, and the result for the lowest particle-dimer state reproduces the one obtained by using the Luescher equation.Comment: Final version published in Phys. Rev. D. Corrected typos: factor of 2 in Eq. (115) [previously Eq. (114)] and factor 6 in Eq. (120) [previously Eq. (119)

    Deprojection technique for galaxy cluster considering point spread function

    Full text link
    We present a new method for the analysis of Abell 1835 observed by XMM-Newton. The method is a combination of the Direct Demodulation technique and deprojection. We eliminate the effects of the point spread function (PSF) with the Direct Demodulation technique. We then use a traditional depro-jection technique to study the properties of Abell 1835. Compared to that of deprojection method only, the central electron density derived from this method increases by 30%, while the temperature profile is similar.Comment: accepted for publication in Sciences in China -- G, the Black Hole special issu

    Spin transfer torque on magnetic insulators

    Full text link
    Recent experimental and theoretical studies focus on spin-mediated heat currents at interfaces between normal metals and magnetic insulators. We resolve conflicting estimates for the order of magnitude of the spin transfer torque by first-principles calculations. The spin mixing conductance G^\uparrow\downarrow of the interface between silver and the insulating ferrimagnet Yttrium Iron Garnet (YIG) is dominated by its real part and of the order of 10^14 \Omega^-1m^-2, i.e. close to the value for intermetallic interface, which can be explained by a local spin model.Comment: 4 pages, 4 figures, 2 table

    A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    Full text link
    Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite size pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework [Gu et al. Phys. Med. Biol. 54 6287-97, 2009]. Dosimetric evaluations against Monte Carlo dose calculations are conducted on 10 IMRT treatment plans (5 head-and-neck cases and 5 lung cases). For all cases, there is improvement with the 3D-density correction over the conventional FSPB algorithm and for most cases the improvement is significant. Regarding the efficiency, because of the appropriate arrangement of memory access and the usage of GPU intrinsic functions, the dose calculation for an IMRT plan can be accomplished well within 1 second (except for one case) with this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB algorithm without 3D-density correction, this new algorithm, though slightly sacrificing the computational efficiency (~5-15% lower), has significantly improved the dose calculation accuracy, making it more suitable for online IMRT replanning
    corecore