1,747 research outputs found

    Anisotropies in the stochastic gravitational-wave background: Formalism and the cosmic string case

    Full text link
    We develop a powerful analytical formalism for calculating the energy density of the stochastic gravitational wave background, including a full description of its anisotropies. This is completely general, and can be applied to any astrophysical or cosmological source. As an example, we apply these tools to the case of a network of Nambu-Goto cosmic strings. We find that the angular spectrum of the anisotropies is relatively insensitive to the choice of model for the string network, but very sensitive to the value of the string tension GμG\mu.Comment: 25 pages, 8 figures; PRD published versio

    Can we detect quantum gravity with compact binary inspirals?

    Get PDF
    Treating general relativity as an effective field theory, we compute the leading-order quantum corrections to the orbits and gravitational-wave emission of astrophysical compact binaries. These corrections are independent of the (unknown) nature of quantum gravity at high energies, and generate a phase shift and amplitude increase in the observed gravitational-wave signal. Unfortunately (but unsurprisingly), these corrections are undetectably small, even in the most optimistic observational scenarios.Comment: 7 pages, 0 figures; version 2 has additional discussion of our approach and 5 additional reference

    Shot noise in the astrophysical gravitational-wave background

    Get PDF
    We calculate the noise induced in the anisotropies of the astrophysical gravitational-wave background by finite sampling of both the galaxy distribution and the compact binary coalescence event rate. This shot noise leads to a scale-invariant bias term in the angular power spectrum Câ„“C_\ell, for which we derive a simple analytical expression. We find that this bias dominates over the true cosmological power spectrum in any reasonable observing scenario, and that only with very long observing times and removal of a large number of foreground sources can the true power spectrum be recovered.Comment: 7 pages, 1 figure, version published in PR

    Bridging the μHz Gap in the Gravitational-Wave Landscape with Binary Resonances

    Get PDF
    Gravitational-wave (GW) astronomy is transforming our understanding of the Universe by probing phenomena invisible to electromagnetic observatories. A comprehensive exploration of the GW frequency spectrum is essential to fully harness this potential. Remarkably, current methods have left the μHz frequency band almost untouched. Here, we show that this μHz gap can be filled by searching for deviations in the orbits of binary systems caused by their resonant interaction with GWs. In particular, we show that laser ranging of the Moon and artificial satellites around the Earth, as well as timing of binary pulsars, may discover the first GW signals in this band, or otherwise set stringent new constraints. To illustrate the discovery potential of these binary resonance searches, we consider the GW signal from a cosmological first-order phase transition, showing that our methods will probe models of the early Universe that are inaccessible to any other near-future GW mission. We also discuss how our methods can shed light on the possible GW signal detected by NANOGrav, either constraining its spectral properties or even giving an independent confirmation

    Detecting stochastic gravitational waves with binary resonance

    Get PDF
    LIGO and Virgo have initiated the era of gravitational-wave (GW) astronomy; but in order to fully explore GW frequency spectrum, we must turn our attention to innovative techniques for GW detection. One such approach is to use binary systems as dynamical GW detectors by studying the subtle perturbations to their orbits caused by impinging GWs. We present a powerful new formalism for calculating the orbital evolution of a generic binary coupled to a stochastic background of GWs, deriving from first principles a secularly-averaged Fokker-Planck equation which fully characterises the statistical evolution of all six of the binary's orbital elements. We also develop practical tools for numerically integrating this equation, and derive the necessary statistical formalism to search for GWs in observational data from binary pulsars and laser-ranging experiments

    Nonlinear gravitational-wave memory from cusps and kinks on cosmic strings

    Full text link
    The nonlinear memory effect is a fascinating prediction of general relativity (GR), in which oscillatory gravitational-wave (GW) signals are generically accompanied by a monotonically-increasing strain which persists in the detector long after the signal has passed. This effect presents a unique opportunity to test GR in the dynamical and nonlinear regime. In this article we calculate the nonlinear memory signal associated with GW bursts from cusps and kinks on cosmic string loops, which are an important target for current and future GW observatories. We obtain analytical waveforms for the GW memory from cusps and kinks, and use these to calculate the "memory of the memory" and other higher-order memory effects. These are among the first memory observables computed for a cosmological source of GWs, with previous literature having focused almost entirely on astrophysical sources. Surprisingly, we find that the cusp GW signal diverges for sufficiently large loops, and argue that the most plausible explanation for this divergence is a breakdown in the weak-field treatment of GW emission from the cusp. This shows that previously-neglected strong gravity effects must play an important role near cusps, although the exact mechanism by which they cure the divergence is not currently understood. We show that one possible resolution is for these cusps to collapse to form primordial black holes (PBHs); the kink memory signal does not diverge, in agreement with the fact that kinks are not predicted to form PBHs. Finally, we investigate the prospects for detecting memory from cusps and kinks with GW observatories. We find that in the scenario where the cusp memory divergence is cured by PBH formation, the memory signal is strongly suppressed and is not likely to be detected. However, alternative resolutions of the cusp divergence may in principle lead to much more favourable observational prospects.Comment: 29 pages, 9 figures, version published in CQ

    Can we detect quantum gravity with compact binary inspirals?

    Get PDF
    Treating general relativity as an effective field theory, we compute the leading-order quantum corrections to the orbits and gravitational-wave emission of astrophysical compact binaries. These corrections are independent of the (unknown) nature of quantum gravity at high energies, and generate a phase shift and amplitude increase in the observed gravitational-wave signal. Unfortunately (but unsurprisingly), these corrections are undetectably small, even in the most optimistic observational scenarios.Comment: 7 pages, 0 figures; version 2 has additional discussion of our approach and 5 additional reference

    Can gravitational-wave memory help constrain binary black-hole parameters? A LISA case study

    Get PDF
    Besides the transient effect, the passage of a gravitational wave also causes a persistent displacement in the relative position of an interferometer’s test masses through the nonlinear memory effect. This effect is generated by the gravitational backreaction of the waves themselves, and encodes additional information about the source. In this work, we explore the implications of using this information for the parameter estimation of massive binary black holes with LISA. Based on a Fisher analysis for nonprecessing black hole binaries, our results show that the memory can help to reduce the degeneracy between the luminosity distance and the inclination for binaries observed only for a short time (∼few hours) before merger. To assess how many such short signals will be detected, we utilized state-of-the-art predictions for the population of massive black hole binaries and models for the gaps expected in the LISA data. We forecast from tens to few hundreds of binaries with observable memory, but only ∼Oð0.1Þ events in 4 years for which the memory helps to reduce the degeneracy between distance and inclination. Based on this, we conclude that the new information from the nonlinear memory, while promising for testing general relativity in the strong field regime, has probably a limited impact on further constraining the uncertainty on massive black hole binary parameters with LISA
    • …
    corecore