1,178 research outputs found
Beyond Covalent Crosslinks: Applications of Supramolecular Gels
Traditionally, gels have been defined by their covalently cross-linked polymer networks. Supramolecular gels challenge this framework by relying on non-covalent interactions for self-organization into hierarchical structures. This class of materials offers a variety of novel and exciting potential applications. This review draws together recent advances in supramolecular gels with an emphasis on their proposed uses as optoelectronic, energy, biomedical, and biological materials. Additional special topics reviewed include environmental remediation, participation in synthesis procedures, and other industrial uses. The examples presented here demonstrate unique benefits of supramolecular gels, including tunability, processability, and self-healing capability, enabling a new approach to solve engineering challenges. Keywords: supramolecular gel; self-assembly; gels; applied soft matte
Turbo- and Hybrid-Electrified Aircraft Propulsion Concepts for Commercial Transport
This review of aircraft electric propulsion architectures conveys that several aircraft system studies have indicated a potential benefit associated with using electrical systems to replace or augment the traditional fuel-based propulsion system. This exciting new approach for designing aircraft opens the door for new configurations. It is also important to convey that this field of study is in its infancy and much improvement is required across the breadth of supporting technologies if the promise of these aircraft concepts is to be realized
Validation and justification of the phylum name Cryptomycota phyl. nov.
The recently proposed new phylum name Cryptomycota phyl. nov. is validly published in order to facilitate its use in future discussions of the ecology, biology, and phylogenetic relationships of the constituent organisms. This name is preferred over the previously tentatively proposed “Rozellida” as new data suggest that the life-style and morphology of Rozella is not representative of the large radiation to which it and other Cryptomycota belong. Furthermore, taxa at higher ranks such as phylum are considered better not based on individual names of included genera, but rather on some special characteristics – in this case the cryptic nature of this group and that they were initially revealed by molecular methods rather than morphological discovery. If the group were later viewed as a member of a different kingdom, the name should be retained to indicate its fungal affinities, as is the practice for other fungal-like protist groups
Googling DNA sequences on the World Wide Web
Background: New web-based technologies provide an excellent opportunity for sharing and
accessing information and using web as a platform for interaction and collaboration. Although
several specialized tools are available for analyzing DNA sequence information, conventional webbased
tools have not been utilized for bioinformatics applications. We have developed a novel
algorithm and implemented it for searching species-specific genomic sequences, DNA barcodes, by
using popular web-based methods such as Google.
Results: We developed an alignment independent character based algorithm based on dividing a
sequence library (DNA barcodes) and query sequence to words. The actual search is conducted by
conventional search tools such as freely available Google Desktop Search. We implemented our
algorithm in two exemplar packages. We developed pre and post-processing software to provide
customized input and output services, respectively. Our analysis of all publicly available DNA
barcode sequences shows a high accuracy as well as rapid results.
Conclusion: Our method makes use of conventional web-based technologies for specialized
genetic data. It provides a robust and efficient solution for sequence search on the web. The
integration of our search method for large-scale sequence libraries such as DNA barcodes provides
an excellent web-based tool for accessing this information and linking it to other available
categories of information on the web
Statistically Motivated Second Order Pooling
Second-order pooling, a.k.a.~bilinear pooling, has proven effective for deep
learning based visual recognition. However, the resulting second-order networks
yield a final representation that is orders of magnitude larger than that of
standard, first-order ones, making them memory-intensive and cumbersome to
deploy. Here, we introduce a general, parametric compression strategy that can
produce more compact representations than existing compression techniques, yet
outperform both compressed and uncompressed second-order models. Our approach
is motivated by a statistical analysis of the network's activations, relying on
operations that lead to a Gaussian-distributed final representation, as
inherently used by first-order deep networks. As evidenced by our experiments,
this lets us outperform the state-of-the-art first-order and second-order
models on several benchmark recognition datasets.Comment: Accepted to ECCV 2018. Camera ready version. 14 page, 5 figures, 3
table
Comparison of Academic and Behavioral Performance between Athletes and Non-athletes
International Journal of Exercise Science 7(1) : 3-13, 2014. The Toronto Charter for Physical Activity (2010) and several national physical activity plans advocate sports participation as an important part of population targeted physical activity for youth. Emerging research evidence also suggests that sports participation during adolescents is linked to significant positive correlations with academic and behavioral performance. The purpose of this study was to compare academic and behavioral performance between male and female public school athletes (Total N=11,139; 38% Female) and non-athletes (Total N=23,891; 52% Female) in a convenient, ethnicity diverse, sample (grades 7 -12) from the state of Texas (USA). We examined the passing rates of individual athletes and non-athletes on standardized tests (Texas Assessment of Knowledge and Skills, TAKS) for math, language arts, reading, writing, science, and social studies. We also examined the percentage of athletes and non-athletes for being “at risk,” for dropping out of school and for the total average number of disciplinary actions. Chi-Square statistical analyses comparing athletes to non-athletes showed that athletes scored significantly better (pp
Performance of Ultrasensitive Rapid Diagnostic Tests for Detecting Asymptomatic Plasmodium falciparum.
Proposed interventions for eliminating drug-resistant Plasmodium falciparum malaria include the targeting of asymptomatic carriers through screening and treatment. We report on the diagnostic performance of the recently developed ultrasensitive rapid diagnostic test (uRDT) compared with screening with conventional RDTs (cRDT) and polymerase chain reaction (PCR) under field conditions in Cambodia in a total of 2,729 individuals. The P. falciparum positivity by quantitative PCR (qPCR) was 3.8% (26/678) in those screened during active case detection and 0.5% (10/2,051) in the cross-sectional survey. Compared with qPCR, the sensitivity of the uRDTs was 53.8% (95% CI: 33.4-73.4%) when used in active case detection and 60.0% (95% CI: 26.2-87.8%) in the cross-sectional survey. The uRDTs did not show a significant improvement in diagnostic performance over cRDTs when used for active case detection and for a malaria prevalence survey in the context of this low-transmission setting
Application of Finite-Time and Control Thermodynamics to Biological Processes at Multiple Scales
An overall synthesis of biology and non-equilibrium thermodynamics remains a challenge at the interface between the physical and life sciences. Herein, theorems from finite-time and control thermodynamics are applied to biological processes to indicate which biological strategies will succeed over different time scales. In general, living systems maximize power at the expense of efficiency during the early stages of their development while proceeding at slower rates to maximize efficiency over longer time scales. The exact combination of yield and power depends upon the constraints on the system, the degrees of freedom in question, and the time scales of the processes. It is emphasized that biological processes are not driven by entropy production but, rather, by <i>informed exergy flow</i>. The entropy production is the generalized friction that is minimized insofar as the constraints allow. Theorems concerning thermodynamic path length and entropy production show that there is a direct tradeoff between the efficiency of a process and the process rate. To quantify this tradeoff, the concepts of <i>compensated heat</i> and <i>waste heat</i> are introduced. Compensated heat is the exergy dissipated, which is necessary for a process to satisfy constraints. Conversely, waste heat is exergy that is dissipated as heat, but does not provide a compensatory increase in rate or other improvement. We hypothesize that it is waste heat that is minimized through natural selection. This can be seen in the strategies employed at several temporal and spatial scales, including organismal development, ecological succession, and long-term evolution. Better understanding the roles of compensated heat and waste heat in biological processes will provide novel insight into the underlying thermodynamic mechanisms involved in metabolism, ecology, and evolution
- …