1,941 research outputs found

    A geoarchaeological perspective on the challenges and trajectories of Mississippi Delta communities

    Get PDF
    Recent geochronology of the Mississippi Delta of coastal Louisiana, USA, provides a high-resolution record of land growth that facilitates the study of ancient settlement patterns in relation to delta evolution. We use stratigraphy and optically stimulated luminescence (OSL) dating to show that two Late Holocene earthen mounds were constructed several hundred years after the land emerged from open water. This multi-century pause allowed natural processes of overbank and crevasse splay deposition to elevate the land surface, reduce flood risk, and foster desirable environmental conditions prior to human occupation. These results are applied to obtain new age constraints for a large number of at-risk or lost archaeological sites with little-to-no absolute chronology. We use our findings to comment on prehistoric, contemporary, and future human-landscape interactions in the Mississippi Delta and other deltaic environments.</p

    Blue mussel shell shape plasticity and natural environments: a quantitative approach

    Get PDF
    Shape variability represents an important direct response of organisms to selective environments. Here, we use a combination of geometric morphometrics and generalised additive mixed models (GAMMs) to identify spatial patterns of natural shell shape variation in the North Atlantic and Arctic blue mussels, Mytilus edulis and M. trossulus, with environmental gradients of temperature, salinity and food availability across 3980 km of coastlines. New statistical methods and multiple study systems at various geographical scales allowed the uncoupling of the developmental and genetic contributions to shell shape and made it possible to identify general relationships between blue mussel shape variation and environment that are independent of age and species influences. We find salinity had the strongest effect on the latitudinal patterns of Mytilus shape, producing shells that were more elongated, narrower and with more parallel dorsoventral margins at lower salinities. Temperature and food supply, however, were the main drivers of mussel shape heterogeneity. Our findings revealed similar shell shape responses in Mytilus to less favourable environmental conditions across the different geographical scales analysed. Our results show how shell shape plasticity represents a powerful indicator to understand the alterations of blue mussel communities in rapidly changing environments.The work was funded by the European Union Seventh Framework Programme, Marie Curie ITN under grant agreement n° 605051

    Dysregulation of Glucagon Secretion by Hyperglycemia-Induced Sodium-Dependent Reduction of ATP Production

    Get PDF
    © 2018 The Author(s). Published by Elsevier Inc.Diabetes is a bihormonal disorder resulting from combined insulin and glucagon secretion defects. Mice lacking fumarase (Fh1) in their β cells (Fh1βKO mice) develop progressive hyperglycemia and dysregulated glucagon secretion similar to that seen in diabetic patients (too much at high glucose and too little at low glucose). The glucagon secretion defects are corrected by low concentrations of tolbutamide and prevented by the sodium-glucose transport (SGLT) inhibitor phlorizin. These data link hyperglycemia, intracellular Na+ accumulation, and acidification to impaired mitochondrial metabolism, reduced ATP production, and dysregulated glucagon secretion. Protein succination, reflecting reduced activity of fumarase, is observed in α cells from hyperglycemic Fh1βKO and β-V59M gain-of-function KATP channel mice, diabetic Goto-Kakizaki rats, and patients with type 2 diabetes. Succination is also observed in renal tubular cells and cardiomyocytes from hyperglycemic Fh1βKO mice, suggesting that the model can be extended to other SGLT-expressing cells and may explain part of the spectrum of diabetic complications.Peer reviewe

    Blue mussel shell shape plasticity and natural environments: a quantitative approach

    Get PDF
    Shape variability represents an important direct response of organisms to selective environments. Here, we use a combination of geometric morphometrics and generalised additive mixed models (GAMMs) to identify spatial patterns of natural shell shape variation in the North Atlantic and Arctic blue mussels, Mytilus edulis and M. trossulus, with environmental gradients of temperature, salinity and food availability across 3980 km of coastlines. New statistical methods and multiple study systems at various geographical scales allowed the uncoupling of the developmental and genetic contributions to shell shape and made it possible to identify general relationships between blue mussel shape variation and environment that are independent of age and species influences. We find salinity had the strongest effect on the latitudinal patterns of Mytilus shape, producing shells that were more elongated, narrower and with more parallel dorsoventral margins at lower salinities. Temperature and food supply, however, were the main drivers of mussel shape heterogeneity. Our findings revealed similar shell shape responses in Mytilus to less favourable environmental conditions across the different geographical scales analysed. Our results show how shell shape plasticity represents a powerful indicator to understand the alterations of blue mussel communities in rapidly changing environments

    Biomineralization plasticity and environmental heterogeneity predict geographical resilience patterns of foundation species to future change

    Get PDF
    Although geographical patterns of species' sensitivity to environmental changes are defined by interacting multiple stressors, little is known about compensatory processes shaping regional differences in organismal vulnerability. Here, we examine large‐scale spatial variations in biomineralization under heterogeneous environmental gradients of temperature, salinity and food availability across a 30° latitudinal range (3,334 km), to test whether plasticity in calcareous shell production and composition, from juveniles to large adults, mediates geographical patterns of resilience to climate change in critical foundation species, the mussels Mytilus edulis and M. trossulus. We find shell calcification decreased towards high latitude, with mussels producing thinner shells with a higher organic content in polar than temperate regions. Salinity was the best predictor of within‐region differences in mussel shell deposition, mineral and organic composition. In polar, subpolar, and Baltic low‐salinity environments, mussels produced thin shells with a thicker external organic layer (periostracum), and an increased proportion of calcite (prismatic layer, as opposed to aragonite) and organic matrix, providing potentially higher resistance against dissolution in more corrosive waters. Conversely, in temperate, higher salinity regimes, thicker, more calcified shells with a higher aragonite (nacreous layer) proportion were deposited, which suggests enhanced protection under increased predation pressure. Interacting effects of salinity and food availability on mussel shell composition predict the deposition of a thicker periostracum and organic‐enriched prismatic layer under forecasted future environmental conditions, suggesting a capacity for increased protection of high‐latitude populations from ocean acidification. These findings support biomineralization plasticity as a potentially advantageous compensatory mechanism conferring Mytilus species a protective capacity for quantitative and qualitative trade‐offs in shell deposition as a response to regional alterations of abiotic and biotic conditions in future environments. Our work illustrates that compensatory mechanisms, driving plastic responses to the spatial structure of multiple stressors, can define geographical patterns of unanticipated species resilience to global environmental change

    Molecular Responses to Thermal and Osmotic Stress in Arctic Intertidal Mussels (Mytilus edulis): The Limits of Resilience.

    Get PDF
    Increases in Arctic temperatures have accelerated melting of the Greenland icesheet, exposing intertidal organisms, such as the blue mussel Mytilus edulis, to high air temperatures and low salinities in summer. However, the interaction of these combined stressors is poorly described at the transcriptional level. Comparing expression profiles of M. edulis from experimentally warmed (30 °C and 33 °C) animals kept at control (23‱) and low salinities (15‱) revealed a significant lack of enrichment for Gene Ontology terms (GO), indicating that similar processes were active under all conditions. However, there was a progressive increase in the abundance of upregulated genes as each stressor was applied, with synergistic increases at 33 °C and 15‱, suggesting combined stressors push the animal towards their tolerance thresholds. Further analyses comparing the effects of salinity alone (23‱, 15‱ and 5‱) showed high expression of stress and osmoregulatory marker genes at the lowest salinity, implying that the cell is carrying out intracellular osmoregulation to maintain the cytosol as hyperosmotic. Identification of aquaporins and vacuolar-type ATPase transcripts suggested the cell may use fluid-filled cavities to excrete excess intracellular water, as previously identified in embryonic freshwater mussels. These results indicate that M. edulis has considerable resilience to heat stress and highly efficient mechanisms to acclimatise to lowered salinity in a changing world

    Estimating the global burden of endemic canine rabies

    Get PDF
    Background: Rabies is a notoriously underreported and neglected disease of lowincome countries. This study aims to estimate the public health and economic burden of rabies circulating in domestic dog populations, globally and on a country-by-country basis, allowing an objective assessment of how much this preventable disease costs endemic countries.&lt;p&gt;&lt;/p&gt; Methodology/Principal Findings: We established relationships between rabies mortality and rabies prevention and control measures, which we incorporated into a model framework. We used data derived from extensive literature searches and questionnaires on disease incidence, control interventions and preventative measures within this framework to estimate the disease burden. The burden of rabies impacts on public health sector budgets, local communities and livestock economies, with the highest risk of rabies in the poorest regions of the world. This study estimates that globally canine rabies causes approximately 59,000 (95% Confidence Intervals: 25- 159,000) human deaths, over 3.7 million (95% CIs: 1.6-10.4 million) disability-adjusted life years (DALYs) and 8.6 billion USD (95% CIs: 2.9-21.5 billion) economic losses annually. The largest component of the economic burden is due to premature death (55%), followed by direct costs of post-exposure prophylaxis (PEP, 20%) and lost income whilst seeking PEP (15.5%), with only limited costs to the veterinary sector due to dog vaccination (1.5%), and additional costs to communities from livestock losses (6%).&lt;p&gt;&lt;/p&gt; Conclusions/Significance: This study demonstrates that investment in dog vaccination, the single most effective way of reducing the disease burden, has been inadequate and that the availability and affordability of PEP needs improving. Collaborative investments by medical and veterinary sectors could dramatically reduce the current large, and unnecessary, burden of rabies on affected communities. Improved surveillance is needed to reduce uncertainty in burden estimates and to monitor the impacts of control efforts.&lt;p&gt;&lt;/p&gt

    Revising the WHO verbal autopsy instrument to facilitate routine cause-of-death monitoring.

    Get PDF
    OBJECTIVE: Verbal autopsy (VA) is a systematic approach for determining causes of death (CoD) in populations without routine medical certification. It has mainly been used in research contexts and involved relatively lengthy interviews. Our objective here is to describe the process used to shorten, simplify, and standardise the VA process to make it feasible for application on a larger scale such as in routine civil registration and vital statistics (CRVS) systems. METHODS: A literature review of existing VA instruments was undertaken. The World Health Organization (WHO) then facilitated an international consultation process to review experiences with existing VA instruments, including those from WHO, the Demographic Evaluation of Populations and their Health in Developing Countries (INDEPTH) Network, InterVA, and the Population Health Metrics Research Consortium (PHMRC). In an expert meeting, consideration was given to formulating a workable VA CoD list [with mapping to the International Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) CoD] and to the viability and utility of existing VA interview questions, with a view to undertaking systematic simplification. FINDINGS: A revised VA CoD list was compiled enabling mapping of all ICD-10 CoD onto 62 VA cause categories, chosen on the grounds of public health significance as well as potential for ascertainment from VA. A set of 221 indicators for inclusion in the revised VA instrument was developed on the basis of accumulated experience, with appropriate skip patterns for various population sub-groups. The duration of a VA interview was reduced by about 40% with this new approach. CONCLUSIONS: The revised VA instrument resulting from this consultation process is presented here as a means of making it available for widespread use and evaluation. It is envisaged that this will be used in conjunction with automated models for assigning CoD from VA data, rather than involving physicians
    corecore