83 research outputs found
Molecular cloud structure in the Magellanic Clouds: e_ect of metallicity
Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe
Molecular Cloud Structure in the Magellanic Clouds: Effect of Metallicity
The chemical structure of neutral clouds in low metallicity environments is
examined with particular emphasis on the H to H_2 and C+ to CO transitions. We
observed near-IR H_2 lines and the CO J=1-0 line from 30 Doradus and N159/N160
in the Large Magellanic Cloud and from DEM S 16, DEM S 37, and LI-SMC 36 in the
Small Magellanic Cloud. We find that the H_2 emission is UV-excited and that
(weak) CO emission always exists (in our surveyed regions) toward positions
where H_2 and [CII] emission have been detected. Using a PDR code and a
radiative transfer code, we simulate the emission of line radiation from
spherical clouds and from large planar clouds. Because the [CII] emission and
H_2 emission arise on the surface of the cloud and the lines are optically
thin, these lines are not affected by changes in the relative sizes of the
neutral cloud and the CO bearing core, while the optically thick CO emission
can be strongly affected. The sizes of clouds are estimated by measuring the
deviation of CO emission strength from that predicted by a planar cloud model
of a given size. The average cloud column density and therefore size increases
as the metallicity decreases. Our result agrees with the photoionization
regulated star formation theory by Mc Kee (1989).Comment: 45 Pages including 15 figures. To be published in the ApJ May 10,
1998 issue, Vol. 49
Today's View on Strangeness
There are several different experimental indications, such as the
pion-nucleon sigma term and polarized deep-inelastic scattering, which suggest
that the nucleon wave function contains a hidden s bar s component. This is
expected in chiral soliton models, which also predicted the existence of new
exotic baryons that may recently have been observed. Another hint of hidden
strangeness in the nucleon is provided by copious phi production in various N
bar N annihilation channels, which may be due to evasions of the
Okubo-Zweig-Iizuka rule. One way to probe the possible polarization of hidden s
bar s pairs in the nucleon may be via Lambda polarization in deep-inelastic
scattering.Comment: 8 pages LaTeX, 10 figures, to appear in the Proceedings of the
International Conference on Parity Violation and Hadronic Structure,
Grenoble, June 200
ZODIACAL EXOPLANETS IN TIME (ZEIT). I. A NEPTUNE-SIZED PLANET ORBITING AN M4.5 DWARF IN THE HYADES STAR CLUSTER
Studying the properties of young planetary systems can shed light on how the dynamics and structure of planets evolve during their most formative years. Recent K2 observations of nearby young clusters (10-800 Myr) have facilitated the discovery of such planetary systems. Here we report the discovery of a Neptune-sized planet transiting an M4.5 dwarf (K2-25) in the Hyades cluster (650-800 Myr). The light curve shows a strong periodic signal at 1.88 days, which we attribute to spot coverage and rotation. We confirm that the planet host is a member of the Hyades by measuring the radial velocity of the system with the high-resolution near-infrared spectrograph Immersion Grating Infrared Spectrometer. This enables us to calculate a distance based on K2-25's kinematics and membership to the Hyades, which in turn provides a stellar radius and mass to â5%-10%, better than what is currently possible for most Kepler M dwarfs (12%-20%). We use the derived stellar density as a prior on fitting the K2 transit photometry, which provides weak constraints on eccentricity. Utilizing a combination of adaptive optics imaging and high-resolution spectra, we rule out the possibility that the signal is due to a bound or background eclipsing binary, confirming the transits' planetary origin. K2-25b has a radius ( 3.43-0.31 +0.95 Râ) much larger than older Kepler planets with similar orbital periods (3.485 days) and host-star masses (0.29 Mâ). This suggests that close-in planets lose some of their atmospheres past the first few hundred million years. Additional transiting planets around the Hyades, Pleiades, and Praesepe clusters from K2 will help confirm whether this planet is atypical or representative of other close-in planets of similar age
Bloom-Gilman duality of inelastic structure functions in nucleon and nuclei
The Bloom-Gilman local duality of the inelastic structure function of the
proton, the deuteron and light complex nuclei is investigated using available
experimental data in the squared four-momentum transfer range from 0.3 to 5
(GeV/c)**2. The results of our analysis suggest that the onset of the
Bloom-Gilman local duality is anticipated in complex nuclei with respect to the
case of the protonand the deuteron. A possible interpretation of this result in
terms of a rescaling effect is discussed with particular emphasis to the
possibility of reproducing the damping of the nucleon-resonance transitions
observed in recent electroproduction data off nuclei.Comment: revised version, to appear in Physical Review
The SAMPLE Experiment and Weak Nucleon Structure
One of the key elements to understanding the structure of the nucleon is the
role of its quark-antiquark sea in its ground state properties such as charge,
mass, magnetism and spin. In the last decade, parity-violating electron
scattering has emerged as an important tool in this area, because of its
ability to isolate the contribution of strange quark-antiquark pairs to the
nucleon's charge and magnetism. The SAMPLE experiment at the MIT-Bates
Laboratory, which has been focused on s-sbar contributions to the proton's
magnetic moment, was the first of such experiments and its program has recently
been completed. In this paper we give an overview of some of the experimental
aspects of parity-violating electron scattering, briefly review the theoretical
predictions for strange quark form factors, summarize the SAMPLE measurements,
and place them in context with the program of experiments being carried out at
other electron scattering facilities such as Jefferson Laboratory and the Mainz
Microtron.Comment: 61 pages, review articl
Quark Imaging in the Proton Via Quantum Phase-Space Distributions
We develop the concept of quantum phase-space (Wigner) distributions for
quarks and gluons in the proton. To appreciate their physical content, we
analyze the contraints from special relativity on the interpretation of elastic
form factors, and examine the physics of the Feynman parton distributions in
the proton's rest frame. We relate the quark Wigner functions to the
transverse-momentum dependent parton distributions and generalized parton
distributions, emphasizing the physical role of the skewness parameter. We show
that the Wigner functions allow to visualize quantum quarks and gluons using
the language of the classical phase space. We present two examples of the quark
Wigner distributions and point out some model-independent features.Comment: 20 pages with 3 fiture
ZODIACAL EXOPLANETS in TIME (ZEIT). III. A SHORT-PERIOD PLANET ORBITING A PRE-MAIN-SEQUENCE STAR in the UPPER SCORPIUS OB ASSOCIATION
We confirm and characterize a close-in (Porb = 5.425 days), super-Neptune sized (5.04-0.37 +0.34 Râ) planet transiting K2-33 (2MASS J16101473-1919095), a late-type (M3) pre-main-sequence (11 Myr old) star in the Upper Scorpius subgroup of the ScorpiusCentaurus OB association. The host star has the kinematics of a member of the Upper Scorpius OB association, and its spectrum contains lithium absorption, an unambiguous sign of youth (<20 Myr) in late-type dwarfs. We combine photometry from K2 and the ground-based MEarth project to refine the planet's properties and constrain the host star's density. We determine K2-33's bolometric flux and effective temperature from moderate-resolution spectra. By utilizing isochrones that include the effects of magnetic fields, we derive a precise radius (6%-7%) and mass (16%) for the host star, and a stellar age consistent with the established value for Upper Scorpius. Follow-up high-resolution imaging and Doppler spectroscopy confirm that the transiting object is not a stellar companion or a background eclipsing binary blended with the target. The shape of the transit, the constancy of the transit depth and periodicity over 1.5 yr, and the independence with wavelength rule out stellar variability or a dust cloud or debris disk partially occulting the star as the source of the signal; we conclude that it must instead be planetary in origin. The existence of K2-33b suggests that close-in planets can form in situ or migrate within âŒ10 Myr, e.g., via interactions with a disk, and that long-timescale dynamical migration such as by Lidov-Kozai or planetplanet scattering is not responsible for all short-period planets
Strong evidences of hadron acceleration in Tycho's Supernova Remnant
Very recent gamma-ray observations of G120.1+1.4 (Tycho's) supernova remnant
(SNR) by Fermi-LAT and VERITAS provided new fundamental pieces of information
for understanding particle acceleration and non-thermal emission in SNRs. We
want to outline a coherent description of Tycho's properties in terms of SNR
evolution, shock hydrodynamics and multi-wavelength emission by accounting for
particle acceleration at the forward shock via first order Fermi mechanism. We
adopt here a quick and reliable semi-analytical approach to non-linear
diffusive shock acceleration which includes magnetic field amplification due to
resonant streaming instability and the dynamical backreaction on the shock of
both cosmic rays (CRs) and self-generated magnetic turbulence. We find that
Tycho's forward shock is accelerating protons up to at least 500 TeV,
channelling into CRs about the 10 per cent of its kinetic energy. Moreover, the
CR-induced streaming instability is consistent with all the observational
evidences indicating a very efficient magnetic field amplification (up to ~300
micro Gauss). In such a strong magnetic field the velocity of the Alfv\'en
waves scattering CRs in the upstream is expected to be enhanced and to make
accelerated particles feel an effective compression factor lower than 4, in
turn leading to an energy spectrum steeper than the standard prediction
{\propto} E^-2. This latter effect is crucial to explain the GeV-to-TeV
gamma-ray spectrum as due to the decay of neutral pions produced in nuclear
collisions between accelerated nuclei and the background gas. The
self-consistency of such an hadronic scenario, along with the fact that the
concurrent leptonic mechanism cannot reproduce both the shape and the
normalization of the detected the gamma-ray emission, represents the first
clear and direct radiative evidence that hadron acceleration occurs efficiently
in young Galactic SNRs.Comment: Minor changes. Accepted for publication in Astronomy & Astrophysic
The igrins yso survey. i. stellar parameters of pre-main-sequence stars in taurus- auriga
We present fundamental parameters for 110 canonical K- and M-type (1.3-0.13Me) Taurus-Auriga young stellar objects (YSOs). The analysis produces a simultaneous determination of effective temperature (Teff), surface gravity (log g), magnetic-field strength (B), and projected rotational velocity (v sin i). Our method employed synthetic spectra and high-resolution (R ⌠45,000) near-infrared spectra taken with the Immersion GRating INfrared Spectrometer (IGRINS) to fit specific K-band spectral regions most sensitive to those parameters. The use of these high-resolution spectra reduces the influence of distance uncertainties, reddening, and non-photospheric continuum emission on the parameter determinations. The median total (fit + systematic) uncertainties were 170 K, 0.28 dex, 0.60 kG, 2.5 km s-1 for Teff, log g, B, and v sin i, respectively. We determined B for 41 Taurus YSOs (upper limits for the remainder) and find systematic offsets (lower Teff, higher log g and v sin i) in parameters when B is measurable but not considered in the fit. The average log g for the Class II and Class III objects differs by 0.23 ± 0.05 dex, which is consistent with Class III objects being the more evolved members of the star-forming region. However, the dispersion in log g is greater than the uncertainties, which highlights how the YSO classification correlates with age (log g), yet there are exceptionally young (lower log g) Class III YSOs and relatively old (higher log g) Class II YSOs with unexplained evolutionary histories. The spectra from this work are provided in an online repository along with TW Hydrae Association comparison objects and the model grid used in our analysis
- âŠ