571 research outputs found

    The Extended Cleavage Specificity of Human Thrombin

    Get PDF
    Thrombin is one of the most extensively studied of all proteases. Its central role in the coagulation cascade as well as several other areas has been thoroughly documented. Despite this, its consensus cleavage site has never been determined in detail. Here we have determined its extended substrate recognition profile using phage-display technology. The consensus recognition sequence was identified as, P2-Pro, P1-Arg, P1′-Ser/Ala/Gly/Thr, P2′-not acidic and P3′-Arg. Our analysis also identifies an important role for a P3′-arginine in thrombin substrates lacking a P2-proline. In order to study kinetics of this cooperative or additive effect we developed a system for insertion of various pre-selected cleavable sequences in a linker region between two thioredoxin molecules. Using this system we show that mutations of P2-Pro and P3′-Arg lead to an approximate 20-fold and 14-fold reduction, respectively in the rate of cleavage. Mutating both Pro and Arg results in a drop in cleavage of 200–400 times, which highlights the importance of these two positions for maximal substrate cleavage. Interestingly, no natural substrates display the obtained consensus sequence but represent sequences that show only 1–30% of the optimal cleavage rate for thrombin. This clearly indicates that maximal cleavage, excluding the help of exosite interactions, is not always desired, which may instead cause problems with dysregulated coagulation. It is likely exosite cooperativity has a central role in determining the specificity and rate of cleavage of many of these in vivo substrates. Major effects on cleavage efficiency were also observed for residues as far away as 4 amino acids from the cleavage site. Insertion of an aspartic acid in position P4 resulted in a drop in cleavage by a factor of almost 20 times

    Ethyl pyruvate reduces mortality in an endotoxin-induced severe acute lung injury mouse model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ethyl pyruvate (EP) was recently identified as an experimental therapeutic agent in a wide variety of model systems for inflammation-mediated tissue and cellular injury.</p> <p>Objective</p> <p>To evaluate the effect of ethyl EP on improving the survival in mice with LPS-induced acute lung injury (ALI).</p> <p>Methods</p> <p>ALI was induced by administering lipopolysaccharide (LPS) intratracheally. The mice were treated intraperitoneally (i.p.) with 100, 50 and 10 mg/kg EP immediately before intratracheal instillation of LPS, and 100 mg/kg EP was administered 0, 12, 24 and 48 hours after induction of ALI. The mortality rate was recorded and analyzed by the Kaplan-Meier method. Serum tumor necrosis factor (TNF)-α, interleukin (IL) -6 and IL-1 β were measured in bronchial alveolar lavage fluid using an enzyme-linked immunosorbent assay. High-mobility group box 1 levels were measured by Western immunoblotting.</p> <p>Results</p> <p>Treatment with EP significantly inhibited the release of HMGB1, TNF-α, IL-6 and IL-1β into bronchoalveolar lavage (BAL) fluids of ALI mice, and reduced the permeability index of the injured lung. High EP doses reduced the mortality from ALI and the permeability index (100 mg/kg and 50 mg/kg EP versus control; P < 0.0001). Early administration of high-dose EP significantly increased survival rate (0, 12 and 24 h versus control; P < 0.0001, P < 0.0001 and P = 0.01 respectively by log-rank test). There was no survival advantage when EP was initiated at 48 h.</p> <p>Conclusion</p> <p>Ethyl pyruvate improves survival and reduces the lung permeability index in mice with LPS-induced ALI.</p

    Semiconductor nanostructure quantum ratchet for high efficiency solar cells

    Get PDF
    Conventional solar cell efficiencies are capped by the ~31% Shockley–Queisser limit because, even with an optimally chosen bandgap, some red photons will go unabsorbed and the excess energy of the blue photons is wasted as heat. Here we demonstrate a “quantum ratchet” device that avoids this limitation by inserting a pair of linked states that form a metastable photoelectron trap in the bandgap. It is designed both to reduce non-radiative recombination, and to break the Shockley–Queisser limit by introducing an additional “sequential two photon absorption” (STPA) excitation channel across the bandgap. We realise the quantum ratchet concept with a semiconductor nanostructure. It raises the electron lifetime in the metastable trap by ~104, and gives a STPA channel that increases the photocurrent by a factor of ~50%. This result illustrates a new paradigm for designing ultra-efficient photovoltaic devices

    The effect of mirodenafil on the penile erection and corpus cavernosum in the rat model of cavernosal nerve injury

    Get PDF
    Impotence is one of the common complications after the radical prostatectomy. One of the main reasons of this complication is due to the dysfunction of the veins in corpus cavernosum. Recent studies have shown that the erectile function is improved after the long-term therapy of phosphodiesterase type 5 inhibitor among patients with post-prostatectomy erectile dysfunction. In this study, we evaluated the effects of mirodenafil on the penile erection and corpus cavernosum tissues in the rat model of cavernosal nerve injury. Rats were divided into four groups: (1) control group, (2) bilateral cavernosal nerve injury group, (3) mirodenafil 10 mg therapy group after the nerve injury and (4) mirodenafil 20 mg therapy group after the nerve injury. After we identified the nerve from the pelvic nerve complex on the lateral side of the prostate, the rats in the control group were sutured without causing any nerve injury and in other groups we damaged the nerve by compressing it with a vessel clamp. Then, 10 and 20 mg kg−1 of mirodenafil were orally administered to two experimental groups. After 8 weeks, the intracavernosal pressure (ICP) was recorded. The immunohistochemical staining and western blot were performed, and the effect of mirodenafil on the expression of cyclic guanosine monophosphate (cGMP) was evaluated through enzyme-linked immunosorbent assay. The ICP of nerve-injured group was decreased compared with the control group; however, the ICP of the mirodenafil-administered groups was improved compared with the nerve-injured group. The Masson's trichrome staining confirmed that the smooth muscle (SM) component was increased in the mirodenafil-administered groups. The nitric oxide synthase expression and cGMP of mirodenafil-administered groups was increased compared with the nerve-injured group. Long-term therapy of mirodenafil may improve the erectile function after the radical prostatectomy by preserving the SM content and inhibiting the fibrosis of the corpus cavernosum

    Evaluation of 3-(3-chloro-phenyl)-5-(4-pyridyl)-4,5-dihydroisoxazole as a Novel Anti-Inflammatory Drug Candidate

    Get PDF
    BACKGROUND: 3-(3-chloro-phenyl)-5-(4-pyridyl)-4,5-dihydroisoxazole (DIC) is a five-membered heterocyclic compound containing a N-O bond. The anti-inflammatory effects of this compound were studied both in vitro and in vivo. PRINCIPAL FINDINGS: DIC effectively decreased TNF-α and IL-6 release from LPS-stimulated macrophages in a dose dependent manner. DIC diminished the levels of COX-2 with subsequent inhibition of PGE(2) production. DIC also compromised HMGB1 translocation from the nucleus to the cytoplasm. Moreover, DIC prevented the nuclear translocation of NF-κB and inhibited the MAPK pathway. In vivo, DIC inhibited migration of neutrophils to the peritoneal cavity of mice. CONCLUSIONS: This study presents the potential utilization of a synthetic compound, as a lead for the development of novel anti-inflammatory drugs
    corecore