2,620 research outputs found
Identification of hip fracture patients from radiographs using Fourier analysis of the trabecular structure: a cross-sectional study
Peer reviewedPublisher PD
Upregulation of the cell-cycle regulator RGC-32 in Epstein-Barr virus-immortalized cells
Epstein-Barr virus (EBV) is implicated in the pathogenesis of multiple human tumours of lymphoid and epithelial origin. The virus infects and immortalizes B cells establishing a persistent latent infection characterized by varying patterns of EBV latent gene expression (latency 0, I, II and III). The CDK1 activator, Response Gene to Complement-32 (RGC-32, C13ORF15), is overexpressed in colon, breast and ovarian cancer tissues and we have detected selective high-level RGC-32 protein expression in EBV-immortalized latency III cells. Significantly, we show that overexpression of RGC-32 in B cells is sufficient to disrupt G2 cell-cycle arrest consistent with activation of CDK1, implicating RGC-32 in the EBV transformation process. Surprisingly, RGC-32 mRNA is expressed at high levels in latency I Burkitt's lymphoma (BL) cells and in some EBV-negative BL cell-lines, although RGC-32 protein expression is not detectable. We show that RGC-32 mRNA expression is elevated in latency I cells due to transcriptional activation by high levels of the differentially expressed RUNX1c transcription factor. We found that proteosomal degradation or blocked cytoplasmic export of the RGC-32 message were not responsible for the lack of RGC-32 protein expression in latency I cells. Significantly, analysis of the ribosomal association of the RGC-32 mRNA in latency I and latency III cells revealed that RGC-32 transcripts were associated with multiple ribosomes in both cell-types implicating post-initiation translational repression mechanisms in the block to RGC-32 protein production in latency I cells. In summary, our results are the first to demonstrate RGC-32 protein upregulation in cells transformed by a human tumour virus and to identify post-initiation translational mechanisms as an expression control point for this key cell-cycle regulator
Comparative Myology and Evolution of Marsupials and Other Vertebrates, With Notes on Complexity, Bauplan, and "Scala Naturae"
Interactive Actor Analysis for Rural Water Management in The Netherlands
Recent developments in the policy sciences emphasize the social environment
in which decisions are made. The ‘network metaphor’ is often used to describe
the key role of interactions between interdependent actors involved in decision
making. These interactions take place in a policy arena drawn up by actors with an
interest in and control over decisions on the issues addressed. Interdependencies,
caused by the need for actors to increase their means of realizing objectives, are
the driving force behind these interactions. Dependency relations are of special
interest to water management and river basin management because of the fundamental
asymmetrical interdependencies that exist in river basins between upstream
and downstream stakeholders. Coleman’s linear system of action models decision
making process involving dependencies between multiple stakeholders as exchange
of control over issues, while interactions are required to negotiate exchanges of
control. We developed an interactive method for actor analysis based on Coleman’s
linear system of action and applied it to the national rural water management policy
domain in The Netherlands. The method is firmly rooted in mathematical sociology
and defies the criticism that methods for actor and stakeholder analysis do not specify
a theoretical basis explaining the causal relations between the variables analyzed and
policy change. With the application to the rural water management policy arena we
intended to increase our insight into the practical applicability of this analyticmethod
in an interactive workshop, the acceptability of the approach for the participating
actors, its contribution to the process of decision making and our understanding of
the rural water management policy arena in The Netherlands. We found that the
Association of Water Authorities, the Ministry of Public Works and the Ministry of
Agriculture are the most powerful actor in the policy domain, while governance and
cost and benefits of rural water management are the most salient issues. Progress
in policy development for rural water management is probably most promising for the issues governance, costs and benefits, safety and rural living conditions through
improved interaction between the Association of Water Authorities, the Ministry of
Agriculture and the Rural Credit Bank. Besides these analytic results the interactive
approach implemented increased the participants understanding of their dependency
on other actors in the rural water management policy domain and supported them
in developing a sound perspective on their dependency position. We concluded
that the method developed is acceptable to real-world policy decision makers, can
successfully be applied in an interactive setting, potentially contributes to the process
of decision making by increasing the participants understanding of their dependency
position, has the potential to delivers valuable advice for future decision-making and
increases our understanding of policy development for rural water management in
general
The fundamental pro-groupoid of an affine 2-scheme
A natural question in the theory of Tannakian categories is: What if you
don't remember \Forget? Working over an arbitrary commutative ring , we
prove that an answer to this question is given by the functor represented by
the \'etale fundamental groupoid \pi_1(\spec(R)), i.e.\ the separable
absolute Galois group of when it is a field. This gives a new definition
for \'etale \pi_1(\spec(R)) in terms of the category of -modules rather
than the category of \'etale covers. More generally, we introduce a new notion
of "commutative 2-ring" that includes both Grothendieck topoi and symmetric
monoidal categories of modules, and define a notion of for the
corresponding "affine 2-schemes." These results help to simplify and clarify
some of the peculiarities of the \'etale fundamental group. For example,
\'etale fundamental groups are not "true" groups but only profinite groups, and
one cannot hope to recover more: the "Tannakian" functor represented by the
\'etale fundamental group of a scheme preserves finite products but not all
products.Comment: 46 pages + bibliography. Diagrams drawn in Tik
A Bayesian method for evaluating and discovering disease loci associations
Background: A genome-wide association study (GWAS) typically involves examining representative SNPs in individuals from some population. A GWAS data set can concern a million SNPs and may soon concern billions. Researchers investigate the association of each SNP individually with a disease, and it is becoming increasingly commonplace to also analyze multi-SNP associations. Techniques for handling so many hypotheses include the Bonferroni correction and recently developed Bayesian methods. These methods can encounter problems. Most importantly, they are not applicable to a complex multi-locus hypothesis which has several competing hypotheses rather than only a null hypothesis. A method that computes the posterior probability of complex hypotheses is a pressing need. Methodology/Findings: We introduce the Bayesian network posterior probability (BNPP) method which addresses the difficulties. The method represents the relationship between a disease and SNPs using a directed acyclic graph (DAG) model, and computes the likelihood of such models using a Bayesian network scoring criterion. The posterior probability of a hypothesis is computed based on the likelihoods of all competing hypotheses. The BNPP can not only be used to evaluate a hypothesis that has previously been discovered or suspected, but also to discover new disease loci associations. The results of experiments using simulated and real data sets are presented. Our results concerning simulated data sets indicate that the BNPP exhibits both better evaluation and discovery performance than does a p-value based method. For the real data sets, previous findings in the literature are confirmed and additional findings are found. Conclusions/Significance: We conclude that the BNPP resolves a pressing problem by providing a way to compute the posterior probability of complex multi-locus hypotheses. A researcher can use the BNPP to determine the expected utility of investigating a hypothesis further. Furthermore, we conclude that the BNPP is a promising method for discovering disease loci associations. © 2011 Jiang et al
Hamstring stretch reflex:could it be a reproducible objective measure of functional knee stability?"
Background: The anterior cruciate ligament (ACL) plays an important role in anterior knee stability by preventing anterior translation of the tibia on the femur. Rapid translation of the tibia with respect to the femur produces an ACL-hamstring stretch reflex which may provide an object measure of neuromuscular function following ACL injury or reconstruction. The aim of this study was to determine if the ACL-hamstring stretch reflex could be reliably and consistently obtained using the KT-2000 arthrometer. Methods: A KT-2000 arthrometer was used to translate the tibia on the femur while recording the electromyography over the biceps femoris muscle in 20 participants, all with intact ACLs. In addition, a sub-group comprising 4 patients undergoing a knee arthroscopy for meniscal pathology, were tested before and after anaesthetic and with direct traction on the ACL during arthroscopy. The remaining 16 participants underwent testing to elicit the reflex using the KT-2000 only. Results: A total number of 182 trials were performed from which 70 trials elicited stretch reflex (38.5 %). The mean onset latency of the hamstring stretch reflexes was 58.9 ± 17.9 ms. The average pull force was 195 ± 47 N, stretch velocity 48 ± 35 mm/s and rate of force 19.7 ± 6.4 N/s. Conclusions Based on these results, we concluded that the response rate of the anterior cruciate ligament-hamstring reflex is too low for it to be reliably used in a clinical setting, and thus would have limited value in assessing the return of neuromuscular function following ACL injuries
Expression of Regulatory Platelet MicroRNAs in Patients with Sickle Cell Disease
Background: Increased platelet activation in sickle cell disease (SCD) contributes to a state of hypercoagulability and confers a risk of thromboembolic complications. The role for post-transcriptional regulation of the platelet transcriptome by microRNAs (miRNAs) in SCD has not been previously explored. This is the first study to determine whether platelets from SCD exhibit an altered miRNA expression profile. Methods and Findings: We analyzed the expression of miRNAs isolated from platelets from a primary cohort (SCD = 19, controls = 10) and a validation cohort (SCD = 7, controls = 7) by hybridizing to the Agilent miRNA microarrays. A dramatic difference in miRNA expression profiles between patients and controls was noted in both cohorts separately. A total of 40 differentially expressed platelet miRNAs were identified as common in both cohorts (p-value 0.05, fold change>2) with 24 miRNAs downregulated. Interestingly, 14 of the 24 downregulated miRNAs were members of three families - miR-329, miR-376 and miR-154 - which localized to the epigenetically regulated, maternally imprinted chromosome 14q32 region. We validated the downregulated miRNAs, miR-376a and miR-409-3p, and an upregulated miR-1225-3p using qRT-PCR. Over-expression of the miR-1225-3p in the Meg01 cells was followed by mRNA expression profiling to identify mRNA targets. This resulted in significant transcriptional repression of 1605 transcripts. A combinatorial approach using Meg01 mRNA expression profiles following miR-1225-3p overexpression, a computational prediction analysis of miRNA target sequences and a previously published set of differentially expressed platelet transcripts from SCD patients, identified three novel platelet mRNA targets: PBXIP1, PLAGL2 and PHF20L1. Conclusions: We have identified significant differences in functionally active platelet miRNAs in patients with SCD as compared to controls. These data provide an important inventory of differentially expressed miRNAs in SCD patients and an experimental framework for future studies of miRNAs as regulators of biological pathways in platelets. © 2013 Jain et al
Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs cellular reprogramming
Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors
- …
