19 research outputs found

    Inflammatory response in mixed viral-bacterial community-acquired pneumonia

    Get PDF
    BACKGROUND: The role of mixed pneumonia (virus + bacteria) in community-acquired pneumonia (CAP) has been described in recent years. However, it is not known whether the systemic inflammatory profile is different compared to monomicrobial CAP. We wanted to investigate this profile of mixed viral-bacterial infection and to compare it to monomicrobial bacterial or viral CAP. METHODS: We measured baseline serum procalcitonin (PCT), C reactive protein (CRP), and white blood cell (WBC) count in 171 patients with CAP with definite etiology admitted to a tertiary hospital: 59 (34.5%) bacterial, 66 (39.%) viral and 46 (27%) mixed (viral-bacterial). RESULTS: Serum PCT levels were higher in mixed and bacterial CAP compared to viral CAP. CRP levels were higher in mixed CAP compared to the other groups. CRP was independently associated with mixed CAP. CRP levels below 26 mg/dL were indicative of an etiology other than mixed in 83% of cases, but the positive predictive value was 45%. PCT levels over 2.10 ng/mL had a positive predictive value for bacterial-involved CAP versus viral CAP of 78%, but the negative predictive value was 48%. CONCLUSIONS: Mixed CAP has a different inflammatory pattern compared to bacterial or viral CAP. High CRP levels may be useful for clinicians to suspect mixed CAP

    Reduced Secretion of YopJ by Yersinia Limits In Vivo Cell Death but Enhances Bacterial Virulence

    Get PDF
    Numerous microbial pathogens modulate or interfere with cell death pathways in cultured cells. However, the precise role of host cell death during in vivo infection remains poorly understood. Macrophages infected by pathogenic species of Yersinia typically undergo an apoptotic cell death. This is due to the activity of a Type III secreted effector protein, designated YopJ in Y. pseudotuberculosis and Y. pestis, and YopP in the closely related Y. enterocolitica. It has recently been reported that Y. enterocolitica YopP shows intrinsically greater capacity for being secreted than Y. pestis YopJ, and that this correlates with enhanced cytotoxicity observed for high virulence serotypes of Y. enterocolitica. The enzymatic activity and secretory capacity of YopP from different Y. enterocolitica serotypes have been shown to be variable. However, the underlying basis for differential secretion of YopJ/YopP, and whether reduced secretion of YopJ by Y. pestis plays a role in pathogenesis during in vivo infection, is not currently known. It has also been reported that similar to macrophages, Y. enterocolitica infection of dendritic cells leads to YopP-dependent cell death. We demonstrate here that in contrast to Y. enterocolitica, Y. pseudotuberculosis infection of bone marrow–derived dendritic cells does not lead to increased cell death. However, death of Y. pseudotuberculosis–infected dendritic cells is enhanced by ectopic expression of YopP in place of YopJ. We further show that polymorphisms at the N-terminus of the YopP/YopJ proteins are responsible for their differential secretion, translocation, and consequent cytotoxicity. Mutation of two amino acids in YopJ markedly enhanced both translocation and cytotoxicity. Surprisingly, expression of YopP or a hypersecreted mutant of YopJ in Y. pseudotuberculosis resulted in its attenuation in oral mouse infection. Complete absence of YopJ also resulted in attenuation of virulence, in accordance with previous observations. These findings suggest that control of cytotoxicity is an important virulence property for Y. pseudotuberculosis, and that intermediate levels of YopJ-mediated cytotoxicity are necessary for maximal systemic virulence of this bacterial pathogen

    MassCode Liquid Arrays as a Tool for Multiplexed High-Throughput Genetic Profiling

    Get PDF
    Multiplexed detection assays that analyze a modest number of nucleic acid targets over large sample sets are emerging as the preferred testing approach in such applications as routine pathogen typing, outbreak monitoring, and diagnostics. However, very few DNA testing platforms have proven to offer a solution for mid-plexed analysis that is high-throughput, sensitive, and with a low cost per test. In this work, an enhanced genotyping method based on MassCode technology was devised and integrated as part of a high-throughput mid-plexing analytical system that facilitates robust qualitative differential detection of DNA targets. Samples are first analyzed using MassCode PCR (MC-PCR) performed with an array of primer sets encoded with unique mass tags. Lambda exonuclease and an array of MassCode probes are then contacted with MC-PCR products for further interrogation and target sequences are specifically identified. Primer and probe hybridizations occur in homogeneous solution, a clear advantage over micro- or nanoparticle suspension arrays. The two cognate tags coupled to resultant MassCode hybrids are detected in an automated process using a benchtop single quadrupole mass spectrometer. The prospective value of using MassCode probe arrays for multiplexed bioanalysis was demonstrated after developing a 14plex proof of concept assay designed to subtype a select panel of Salmonella enterica serogroups and serovars. This MassCode system is very flexible and test panels can be customized to include more, less, or different markers

    Yersinia enterocolitica Targets Cells of the Innate and Adaptive Immune System by Injection of Yops in a Mouse Infection Model

    Get PDF
    Yersinia enterocolitica (Ye) evades the immune system of the host by injection of Yersinia outer proteins (Yops) via a type three secretion system into host cells. In this study, a reporter system comprising a YopE-β-lactamase hybrid protein and a fluorescent staining sensitive to β-lactamase cleavage was used to track Yop injection in cell culture and in an experimental Ye mouse infection model. Experiments with GD25, GD25-β1A, and HeLa cells demonstrated that β1-integrins and RhoGTPases play a role for Yop injection. As demonstrated by infection of splenocyte suspensions in vitro, injection of Yops appears to occur randomly into all types of leukocytes. In contrast, upon infection of mice, Yop injection was detected in 13% of F4/80+, 11% of CD11c+, 7% of CD49b+, 5% of Gr1+ cells, 2.3% of CD19+, and 2.6% of CD3+ cells. Taking the different abundance of these cell types in the spleen into account, the highest total number of Yop-injected cells represents B cells, particularly CD19+CD21+CD23+ follicular B cells, followed by neutrophils, dendritic cells, and macrophages, suggesting a distinct cellular tropism of Ye. Yop-injected B cells displayed a significantly increased expression of CD69 compared to non-Yop-injected B cells, indicating activation of these cells by Ye. Infection of IFN-γR (receptor)- and TNFRp55-deficient mice resulted in increased numbers of Yop-injected spleen cells for yet unknown reasons. The YopE-β-lactamase hybrid protein reporter system provides new insights into the modulation of host cell and immune responses by Ye Yops

    MDR/XDR-TB colour test for drug susceptibility testing of Mycobacterium tuberculosis, Northwest Ethiopia.

    No full text
    BACKGROUND: Appropriate-technology tests are needed for Mycobacterium tuberculosis drug-susceptibility testing (DST) in resource-constrained settings. We evaluated the MDR/XDRTB colour plate thin-layer agar test (TB-CX) for M. tuberculosis DST by directly testing sputum at University of Gondar Hospital. METHODS: Sputum samples were each divided into 2 aliquots. One aliquot was mixed with disinfectant and applied directly to the TB-CX quadrant petri-plate containing culture medium with and without isoniazid, rifampicin or ciprofloxacin. Concurrently, the other aliquot was decontaminated with sodium hydroxide, centrifuged and cultured on Lowenstein-Jensen media, then the stored M. tuberculosis isolates were sub-cultured in BACTEC™ Mycobacteria Growth Indicator Tube™ (MGIT) 960 for reference DST. RESULTS: TB-CX text yielded DST results for 94% (123/131) of positive samples. For paired DST results, median days from sputum processing to DST was 12 for TB-CX versus 35 for LJ-MGIT (P < 0.001). Compared with LJ-MGIT for isoniazid, rifampicin and MDR-TB, TB-CX test had: 59%, 96% and 95% sensitivity; 96%, 94% and 98% specificity; and 85%, 94% and 98% agreement, respectively. All ciprofloxacin DST results were susceptible by both methods. CONCLUSION: The TB-CX was simple and rapid for M. tuberculosis DST. Discordant DST results may have resulted from sub-optimal storage and different isoniazid concentrations used in TB-CX versus the reference standard test

    Evaluation of the tuberculosis culture color plate test for rapid detection of drug susceptible and drug-resistant Mycobacterium tuberculosis in a resource-limited setting, Addis Ababa, Ethiopia

    No full text
    Timely diagnosis of tuberculosis (TB) is limited in Ethiopia. We evaluated the performance of a low technology, thin layer agar, Mycobacterium tuberculosis (M.tb) culture color plate (TB-CX) test with concurrent drug susceptibility testing (DST) to isoniazid (INH), rifampin (RIF), and pyrazinamide (PZA) directly from sputum specimens. Patients undergoing examination for TB and multidrug-resistant (MDR)-TB were enrolled in Addis Ababa, Ethiopia from March 2016 to February 2017. All subjects received a GeneXpert MTB/RIF PCR test. TB-CX test results were compared to reference Löwenstein-Jensen (LJ) culture for M.tb detection and DST for susceptibility to INH and RIF. Kappa statistic was applied to test agreement between results for TB-CX test and the reference methods, a cut-off Kappa value of 0.75 was considered as high level of agreements. A total of 137 participants were analyzed: 88 (64%) were new TB cases, 49 (36%) were re-treatment cases. The TB-CX test detected M.tb and DST in an average of 13 days compared to 50 days for the conventional DST result. The sensitivity and specificity of the TB-CX test for detecting M.tb were 94% and 98%, respectively (concordance, 96%; kappa 0.91). The sensitivity of the TB-CX test to detect drug resistance to INH, RIF, and MDR-TB was 91%, 100%, and 90% respectively. The specificity of the TB-CX test for detecting INH, RIF, and MDR-TB was 94%, 40%, and 94% respectively. Overall agreement between TB-CX test and LJ DST for detection of MDR-TB was 93%. The TB-CX test showed strong agreement with the GeneXpert test for detecting M.tb (89%, kappa 0.76) but low agreement for the detection of RIF resistance (57%, kappa 0.28). The TB-CX test was found to be a good alternative method for screening of TB and selective drug resistant-TB in a timely and cost-efficient manner

    Development of a multiplexed bead-based suspension array for the detection and discrimination of Pospiviroid plant pathogens

    Get PDF
    Efficient and reliable diagnostic tools for the routine indexing and certification of clean propagating material are essential for the management of pospiviroid diseases in horticultural crops. This study describes the development of a true multiplexed diagnostic method for the detection and identification of all nine currently recognized pospiviroid species in one assay using Luminex bead-based suspension array technology. In addition, a new data-driven, statistical method is presented for establishing thresholds for positivity for individual assays within multiplexed arrays. When applied to the multiplexed array data generated in this study, the new method was shown to have better control of false positives and false negative results than two other commonly used approaches for setting thresholds. The 11-plex Luminex MagPlex-TAG pospiviroid array described here has a unique hierarchical assay design, incorporating a near-universal assay in addition to nine species-specific assays, and a co-amplified plant internal control assay for quality assurance purposes. All assays of the multiplexed array were shown to be 100% specific, sensitive and reproducible. The multiplexed array described herein is robust, easy to use, displays unambiguous results and has strong potential for use in routine pospiviroid indexing to improve disease management strategies
    corecore