72 research outputs found

    Cutaneous head and neck melanoma in OPTiM, a randomized phase 3 trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor for the treatment of unresected stage IIIB/IIIC/IV melanoma.

    Get PDF
    Background Cutaneous head and neck melanoma has poor outcomes and limited treatment options. In OPTiM, a phase 3 study in patients with unresectable stage IIIB/IIIC/IV melanoma, intralesional administration of the oncolytic virus talimogene laherparepvec improved durable response rate (DRR; continuous response ≥6 months) compared with subcutaneous granulocyte-macrophage colony-stimulating factor (GM-CSF).Methods Retrospective review of OPTiM identified patients with cutaneous head and neck melanoma given talimogene laherparepvec (n = 61) or GM-CSF (n = 26). Outcomes were compared between talimogene laherparepvec and GM-CSF treated patients with cutaneous head and neck melanoma.Results DRR was higher for talimogene laherparepvec-treated patients than for GM-CSF treated patients (36.1% vs 3.8%; p = .001). A total of 29.5% of patients had a complete response with talimogene laherparepvec versus 0% with GM-CSF. Among talimogene laherparepvec-treated patients with a response, the probability of still being in response after 12 months was 73%. Median overall survival (OS) was 25.2 months for GM-CSF and had not been reached with talimogene laherparepvec.Conclusion Treatment with talimogene laherparepvec was associated with improved response and survival compared with GM-CSF in patients with cutaneous head and neck melanoma. © 2016 Wiley Periodicals, Inc. Head Neck 38: 1752-1758, 2016

    New targets for therapy in breast cancer: Small molecule tyrosine kinase inhibitors

    Get PDF
    Over the past several years many advances have been made in our understanding of critical pathways involved in carcinogenesis and tumor growth. These advances have led to the investigation of small molecule inhibitors of the ErbB family of receptor tyrosine kinases across a broad spectrum of malignancies. In this article we summarize the rationale for targeting members of the ErbB family in breast cancer, and review the preclinical and clinical data for the agents that are furthest in development. In addition, we highlight directions for future research, such as exploration of the potential crosstalk between the ErbB and hormone receptor signal transduction pathways, identification of predictive markers for tumor sensitivity, and development of rational combination regimens that include the tyrosine kinase inhibitors

    Mitochondrial Apoptosis and FAK Signaling Disruption by a Novel Histone Deacetylase Inhibitor, HTPB, in Antitumor and Antimetastatic Mouse Models

    Get PDF
    BACKGROUND: Compound targeting histone deacetylase (HDAC) represents a new era in molecular cancer therapeutics. However, effective HDAC inhibitors for the treatment of solid tumors remain to be developed. METHODOLOGY/PRINCIPAL FINDINGS: Here, we propose a novel HDAC inhibitor, N-Hydroxy-4-(4-phenylbutyryl-amino) benzamide (HTPB), as a potential chemotherapeutic drug for solid tumors. The HDAC inhibition of HTPB was confirmed using HDAC activity assay. The antiproliferative and anti-migratory mechanisms of HTPB were investigated by cell proliferation, flow cytometry, DNA ladder, caspase activity, Rho activity, F-actin polymerization, and gelatin-zymography for matrix metalloproteinases (MMPs). Mice with tumor xenograft and experimental metastasis model were used to evaluate effects on tumor growth and metastasis. Our results indicated that HTPB was a pan-HDAC inhibitor in suppressing cell viability specifically of lung cancer cells but not of the normal lung cells. Upon HTPB treatment, cell cycle arrest was induced and subsequently led to mitochondria-mediated apoptosis. HTPB disrupted F-actin dynamics via downregulating RhoA activity. Moreover, HTPB inhibited activity of MMP2 and MMP9, reduced integrin-β1/focal adhesion complex formation and decreased pericellular poly-fibronectin assemblies. Finally, intraperitoneal injection or oral administration of HTPB efficiently inhibited A549 xenograft tumor growth in vivo without side effects. HTPB delayed lung metastasis of 4T1 mouse breast cancer cells. Acetylation of histone and non-histone proteins, induction of apoptotic-related proteins and de-phosphorylation of focal adhesion kinase were confirmed in treated mice. CONCLUSIONS/SIGNIFICANCE: These results suggested that intrinsic apoptotic pathway may involve in anti-tumor growth effects of HTPB in lung cancer cells. HTPB significantly suppresses tumor metastasis partly through inhibition of integrin-β1/FAK/MMP/RhoA/F-actin pathways. We have provided convincing preclinical evidence that HTPB is a potent HDAC targeted inhibitor and is thus a promising candidate for lung cancer chemotherapy

    The hTERT Promoter Enhances the Antitumor Activity of an Oncolytic Adenovirus under a Hypoxic Microenvironment

    Get PDF
    Hypoxia is a microenvironmental factor that contributes to the invasion, progression and metastasis of tumor cells. Hypoxic tumor cells often show more resistance to conventional chemoradiotherapy than normoxic tumor cells, suggesting the requirement of novel antitumor therapies to efficiently eliminate the hypoxic tumor cells. We previously generated a tumor-specific replication-competent oncolytic adenovirus (OBP-301: Telomelysin), in which the human telomerase reverse transcriptase (hTERT) promoter drives viral E1 expression. Since the promoter activity of the hTERT gene has been shown to be upregulated by hypoxia, we hypothesized that, under hypoxic conditions, the antitumor effect of OBP-301 with the hTERT promoter would be more efficient than that of the wild-type adenovirus 5 (Ad5). In this study, we investigated the antitumor effects of OBP-301 and Ad5 against human cancer cells under a normoxic (20% oxygen) or a hypoxic (1% oxygen) condition. Hypoxic condition induced nuclear accumulation of the hypoxia-inducible factor-1α and upregulation of hTERT promoter activity in human cancer cells. The cytopathic activity of OBP-301 was significantly higher than that of Ad5 under hypoxic condition. Consistent with their cytopathic activity, the replication of OBP-301 was significantly higher than that of Ad5 under the hypoxic condition. OBP-301-mediated E1A was expressed within hypoxic areas of human xenograft tumors in mice. These results suggest that the cytopathic activity of OBP-301 against hypoxic tumor cells is mediated through hypoxia-mediated activation of the hTERT promoter. Regulation of oncolytic adenoviruses by the hTERT promoter is a promising antitumor strategy, not only for induction of tumor-specific oncolysis, but also for efficient elimination of hypoxic tumor cells

    The role of HER-2/neu expression on the survival of patients with lung cancer: a systematic review of the literature

    Get PDF
    C-erbB-2 prognostic value for survival in patients with lung cancer remains controversial. We performed a systematic review of the literature to clarify its impact. Studies were identified by an electronic search in order to aggregate the survival results, after a methodological assessment using the scale of the European Lung Cancer Working Party. To be eligible, a study had to deal with c-erbB-2 assessment in lung cancer patients and to analyse survival according to c-erbB-2 expression. In total, 30 studies were eligible: 24 studies dealt with non-small-cell lung carcinoma (NSCLC), five with adenocarcinoma and one study dealt with small-cell carcinoma. In all, 31% of the patients were positive for c-erbB-2. According to c-erbB-2 expression, 13 studies were 'negative' (significant detrimental effect on survival), one 'positive' (significant survival improvement) and 16 not significant. Significant studies had a better subscore relative to analysis and results report than nonsignificant studies. In total, 86% of the significant studies and only 56% of the nonsignificant studies were evaluable for the meta-analysis. This suggests a possible bias in our aggregated results. For NSCLC, the hazard ratio was 1.55 (95% CI: 1.29-1.86) in favour of tumours that do not express c-erbB-2. In conclusion, the overexpression of c-erbB-2 might be a factor of poor prognosis for survival in NSCLC, but there is a potential bias in favour of the significant studies with an overestimation risk of the magnitude of the true effect of c-erbB-2 overexpression.Journal ArticleResearch Support, Non-U.S. Gov'tReviewinfo:eu-repo/semantics/publishe

    Ovarian cancer immunotherapy: opportunities, progresses and challenges

    Get PDF
    Due to the low survival rates from invasive ovarian cancer, new effective treatment modalities are urgently needed. Compelling evidence indicates that the immune response against ovarian cancer may play an important role in controlling this disease. We herein summarize multiple immune-based strategies that have been proposed and tested for potential therapeutic benefit against advanced stage ovarian cancer. We will examine the evidence for the premise that an effective therapeutic vaccine against ovarian cancer is useful not only for inducing remission of the disease but also for preventing disease relapse. We will also highlight the questions and challenges in the development of ovarian cancer vaccines, and critically discuss the limitations of some of the existing immunotherapeutic strategies. Finally, we will summarize our own experience on the use of patient-specific tumor-derived heat shock protein-peptide complex for the treatment of advanced ovarian cancer

    High Resolution In Vivo Bioluminescent Imaging for the Study of Bacterial Tumour Targeting

    Get PDF
    The ability to track microbes in real time in vivo is of enormous value for preclinical investigations in infectious disease or gene therapy research. Bacteria present an attractive class of vector for cancer therapy, possessing a natural ability to grow preferentially within tumours following systemic administration. Bioluminescent Imaging (BLI) represents a powerful tool for use with bacteria engineered to express reporter genes such as lux. BLI is traditionally used as a 2D modality resulting in images that are limited in their ability to anatomically locate cell populations. Use of 3D diffuse optical tomography can localize the signals but still need to be combined with an anatomical imaging modality like micro-Computed Tomography (μCT) for interpretation
    corecore