2,610 research outputs found

    Von Neumann Regular Cellular Automata

    Full text link
    For any group GG and any set AA, a cellular automaton (CA) is a transformation of the configuration space AGA^G defined via a finite memory set and a local function. Let CA(G;A)\text{CA}(G;A) be the monoid of all CA over AGA^G. In this paper, we investigate a generalisation of the inverse of a CA from the semigroup-theoretic perspective. An element τ∈CA(G;A)\tau \in \text{CA}(G;A) is von Neumann regular (or simply regular) if there exists σ∈CA(G;A)\sigma \in \text{CA}(G;A) such that τ∘σ∘τ=τ\tau \circ \sigma \circ \tau = \tau and σ∘τ∘σ=σ\sigma \circ \tau \circ \sigma = \sigma, where ∘\circ is the composition of functions. Such an element σ\sigma is called a generalised inverse of τ\tau. The monoid CA(G;A)\text{CA}(G;A) itself is regular if all its elements are regular. We establish that CA(G;A)\text{CA}(G;A) is regular if and only if ∣G∣=1\vert G \vert = 1 or ∣A∣=1\vert A \vert = 1, and we characterise all regular elements in CA(G;A)\text{CA}(G;A) when GG and AA are both finite. Furthermore, we study regular linear CA when A=VA= V is a vector space over a field F\mathbb{F}; in particular, we show that every regular linear CA is invertible when GG is torsion-free elementary amenable (e.g. when G=Zd, d∈NG=\mathbb{Z}^d, \ d \in \mathbb{N}) and V=FV=\mathbb{F}, and that every linear CA is regular when VV is finite-dimensional and GG is locally finite with Char(F)∤o(g)\text{Char}(\mathbb{F}) \nmid o(g) for all g∈Gg \in G.Comment: 10 pages. Theorem 5 corrected from previous versions, in A. Dennunzio, E. Formenti, L. Manzoni, A.E. Porreca (Eds.): Cellular Automata and Discrete Complex Systems, AUTOMATA 2017, LNCS 10248, pp. 44-55, Springer, 201

    Entropy production, viscosity bounds and bumpy black holes

    Get PDF
    The ratio of shear viscosity to entropy density, η/s, is computed in various holographic geometries that break translation invariance (but are isotropic). The shear viscosity does not have a hydrodynamic interpretation in such backgrounds, but does quantify the rate of entropy production due to a strain. Fluctuations of the metric components δg xy are massive about these backgrounds, leading to η/s < 1/(4π) at all finite temperatures (even in Einstein gravity). As the temperature is taken to zero, different behaviors are possible. If translation symmetry breaking is irrelevant in the far IR, then η/s tends to a constant at T = 0. This constant can be parametrically small. If the translation symmetry is broken in the far IR (which nonetheless develops emergent scale invariance), then η/s ∼ T 2 ν as T → 0, with ν ≤ 1 in all cases we have considered. While these results violate simple bounds on η/s, we note that they are consistent with a possible bound on the rate of entropy production due to strain

    Thermal conductivity at a disordered quantum critical point

    Get PDF
    © 2016, The Author(s). Abstract: Strongly disordered and strongly interacting quantum critical points are difficult to access with conventional field theoretic methods. They are, however, both experimentally important and theoretically interesting. In particular, they are expected to realize universal incoherent transport. Such disordered quantum critical theories have recently been constructed holographically by deforming a CFT by marginally relevant disorder. In this paper we find additional disordered fixed points via relevant disordered deformations of a holographic CFT. Using recently developed methods in holographic transport, we characterize the thermal conductivity in both sets of theories in 1+1 dimensions. The thermal conductivity is found to tend to a constant at low temperatures in one class of fixed points, and to scale as T0.3 in the other. Furthermore, in all cases the thermal conductivity exhibits discrete scale invariance, with logarithmic in temperature oscillations superimposed on the low temperature scaling behavior. At no point do we use the replica trick

    Emergent scale invariance of disordered horizons

    Get PDF
    We construct planar black hole solutions in AdS 3 and AdS 4 in which the boundary CFT is perturbed by marginally relevant quenched disorder. We show that the entropy density of the horizon has the scaling temperature dependence s ∼ T (d−1)/z (with d = 2, 3). The dynamical critical exponent z is computed numerically and, at weak disorder, analytically. These results lend support to the claim that the perturbed CFT flows to a disordered quantum critical theory in the IR

    The neonicotinoid insecticide Imidacloprid repels pollinating flies and beetles at field-realistic concentrations

    Get PDF
    Neonicotinoids are widely used systemic insecticides which, when applied to flowering crops, are translocated to the nectar and pollen where they may impact upon pollinators. Given global concerns over pollinator declines, this potential impact has recently received much attention. Field exposure of pollinators to neonicotinoids depends on the concentrations present in flowering crops and the degree to which pollinators choose to feed upon them. Here we describe a simple experiment using paired yellow pan traps with or without insecticide to assess whether the commonly used neonicotinoid imidacloprid repels or attracts flying insects. Both Diptera and Coleoptera exhibited marked avoidance of traps containing imidacloprid at a field-realistic dose of 1 μg L-1, with Diptera avoiding concentrations as low as 0.01 μg L-1. This is to our knowledge the first evidence for any biological activity at such low concentrations, which are below the limits of laboratory detection using most commonly available techniques. Catch of spiders in pan traps was also slightly reduced by the highest concentrations of imidacloprid used (1 μg L-1), but catch was increased by lower concentrations. It remains to be seen if the repellent effect on insects occurs when neonicotinoids are present in real flowers, but if so then this could have implications for exposure of pollinators to neonicotinoids and for crop pollination. © 2013 Easton, Goulson

    Different modes of variation for each BG lineage suggest different functions.

    Get PDF
    Mammalian butyrophilins have various important functions, one for lipid binding but others as ligands for co-inhibition of αβ T cells or for stimulation of γδ T cells in the immune system. The chicken BG homologues are dimers, with extracellular immunoglobulin variable (V) domains joined by cysteines in the loop equivalent to complementarity-determining region 1 (CDR1). BG genes are found in three genomic locations: BG0 on chromosome 2, BG1 in the classical MHC (the BF-BL region) and many BG genes in the BG region just outside the MHC. Here, we show that BG0 is virtually monomorphic, suggesting housekeeping function(s) consonant with the ubiquitous tissue distribution. BG1 has allelic polymorphism but minimal sequence diversity, with the few polymorphic residues at the interface of the two V domains, suggesting that BG1 is recognized by receptors in a conserved fashion. Any phenotypic variation should be due to the intracellular region, with differential exon usage between alleles. BG genes in the BG region can generate diversity by exchange of sequence cassettes located in loops equivalent to CDR1 and CDR2, consonant with recognition of many ligands or antigens for immune defence. Unlike the mammalian butyrophilins, there are at least three modes by which BG genes evolve.Wellcome Trust (Grant IDs: RG49834 (Studentship), 089305 and a Senior Investigator Award), Biotechnology and Biological Sciences Research Council (Studentship)This is the final version of the article. It first appeared from The Royal Society via http://dx.doi.org/10.1098/rsob.16018

    Variable order Mittag-Leffler fractional operators on isolated time scales and application to the calculus of variations

    Full text link
    We introduce new fractional operators of variable order on isolated time scales with Mittag-Leffler kernels. This allows a general formulation of a class of fractional variational problems involving variable-order difference operators. Main results give fractional integration by parts formulas and necessary optimality conditions of Euler-Lagrange type.Comment: This is a preprint of a paper whose final and definite form is with Springe

    Systems Thinking Approach to Sustainable Performance in RAMSAR Sites

    Get PDF
    This article explores and validates the integrated use of the Viable System Model (VSM) and the Partial Least Squares Path Modeling (PLS-PM) approach to assess the sustainable management of RAMSAR sites carrying out economic activities. This work adopts a systems- thinking approach integrating systemic methodologies in three phases: 1) the VSM was first used to develop a conceptual model of the organisational problem; 2) PLS-PM was used to propose a construct to outline a solution, as well as to statistically validate the relationships proposed in the conceptual model; finally, 3) through the VSM, the relationships between actors were rethought in order to promote sustainable performance. The obtained results suggest that the joint use of VSM and PLS-PM is an effective approach that aids to the identification of relational and structural pathologies affecting the observed RAMSAR systems. It also proved useful to suggest that relationships can lead to the sustainable performance of the sites under study. It should be noted that the framework of systemic tools is constrained in its application to the organisational domain: assessing two RAMSAR areas in Mexico. Methodologically, this is the first application of the integrated use of VSM and PLS-PM to analyse the management and viability/sustainability of RAMSAR areas from an organisational perspective, opening a new avenue for the analysis and optimisation of management of such areas. This study provides tools to support actors and academics related to RAMSAR sites and opens up a discussion on how to rethink the organisational interactions in order to improve RAMSAR sites adaptive capabilities

    α-Galactosylceramide and peptide-based nano-vaccine synergistically induced a strong tumor suppressive effect in melanoma

    Get PDF
    α-Galactosylceramide (GalCer) is a glycolipid widely known as an activator of Natural killer T (NKT) cells, constituting a promising adjuvant against cancer, including melanoma. However, limited clinical outcomes have been obtained so far. This study evaluated the synergy between GalCer and major histocompatibility complex (MHC) class I and MHC class II melanoma-associated peptide antigens and the Toll-Like Receptor (TLR) ligands CpG and monophosphoryl lipid A (MPLA), which we intended to maximize following their co-delivery by a nanoparticle (NP). This is expected to improve GalCer capture by dendritic cells (DCs) and subsequent presentation to NKT cells, and simultaneously induce an anti-tumor specific T-cell mediated immunity. The combination of GalCer with melanoma peptides and TLR ligands successfully restrained tumor growth. The tumor volume in these animals was 5-fold lower than the ones presented by mice immunized with NPs not containing GalCer. However, tumor growth was controlled at similar levels by GalCer entrapped or in its soluble form, when mixed with antigens and TLR ligands. Those two groups showed an improved infiltration of T lymphocytes into the tumor, but only GalCer-loaded nano-vaccine induced a prominent and enhanced infiltration of NKT and NK cells. In addition, splenocytes of these animals secreted levels of IFN-γ and IL-4 at least 1.5-fold and 2-fold higher, respectively, than those treated with the mixture of antigens and adjuvants in solution. Overall, the combined delivery of the NKT agonist with TLR ligands and melanoma antigens via this multivalent nano-vaccine displayed a synergistic anti-tumor immune-mediated efficacy in B16F10 melanoma mouse model. STATEMENT OF SIGNIFICANCE: Combination of α-galactosylceramide (GalCer), a Natural Killer T (NKT) cell agonist, with melanoma-associated antigens presented by MHC class I (Melan-A:26) and MHC class II (gp100:44) molecules, and Toll-like Receptor (TLR) ligands (MPLA and CpG), within nanoparticle matrix induced a prominent anti-tumor immune response able to restrict melanoma growth. An enhanced infiltration of NKT and NK cells into tumor site was only achieved when the combination GalCer, antigens and TLR ligands were co-delivered by nanovaccine
    • …
    corecore