81 research outputs found

    A Mouse Model of Post-Arthroplasty Staphylococcus aureus Joint Infection to Evaluate In Vivo the Efficacy of Antimicrobial Implant Coatings

    Get PDF
    Post-arthroplasty infections represent a devastating complication of total joint replacement surgery, resulting in multiple reoperations, prolonged antibiotic use, extended disability and worse clinical outcomes. As the number of arthroplasties in the U.S. will exceed 3.8 million surgeries per year by 2030, the number of post-arthroplasty infections is projected to increase to over 266,000 infections annually. The treatment of these infections will exhaust healthcare resources and dramatically increase medical costs.To evaluate novel preventative therapeutic strategies against post-arthroplasty infections, a mouse model was developed in which a bioluminescent Staphylococcus aureus strain was inoculated into a knee joint containing an orthopaedic implant and advanced in vivo imaging was used to measure the bacterial burden in real-time. Mice inoculated with 5x10(3) and 5x10(4) CFUs developed increased bacterial counts with marked swelling of the affected leg, consistent with an acute joint infection. In contrast, mice inoculated with 5x10(2) CFUs developed a low-grade infection, resembling a more chronic infection. Ex vivo bacterial counts highly correlated with in vivo bioluminescence signals and EGFP-neutrophil fluorescence of LysEGFP mice was used to measure the infection-induced inflammation. Furthermore, biofilm formation on the implants was visualized at 7 and 14 postoperative days by variable-pressure scanning electron microscopy (VP-SEM). Using this model, a minocycline/rifampin-impregnated bioresorbable polymer implant coating was effective in reducing the infection, decreasing inflammation and preventing biofilm formation.Taken together, this mouse model may represent an alternative pre-clinical screening tool to evaluate novel in vivo therapeutic strategies before studies in larger animals and in human subjects. Furthermore, the antibiotic-polymer implant coating evaluated in this study was clinically effective, suggesting the potential for this strategy as a therapeutic intervention to combat post-arthroplasty infections

    Optical Imaging of Bacterial Infections

    Get PDF
    The rise in multidrug resistant (MDR) bacteria has become a global crisis. Rapid and accurate diagnosis of infection will facilitate antibiotic stewardship and preserve our ability to treat and cure patients from bacterial infection. Direct in situ imaging of bacteria offers the prospect of accurately diagnosing disease and monitoring patient outcomes and response to treatment in real-time. There have been many recent advances in the field of optical imaging of infection; namely in specific probe and fluorophore design. This combined with the advances in imaging device technology render direct optical imaging of infection a feasible approach for accurate diagnosis in the clinic. Despite this, there are currently no licensed molecular probes for clinical optical imaging of infection. Here we report some of the most promising and interesting probes and approaches under development for this purpose, which have been evaluated in in vivo models within the laboratory setting

    Maternal exposure to air pollution before and during pregnancy related to changes in newborn's cord blood lymphocyte subpopulations. The EDEN study cohort

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Toxicants can cross the placenta and expose the developing fetus to chemical contamination leading to possible adverse health effects, by potentially inducing alterations in immune competence. Our aim was to investigate the impacts of maternal exposure to air pollution before and during pregnancy on newborn's immune system.</p> <p>Methods</p> <p>Exposure to background particulate matter less than 10 μm in diameter (PM<sub>10</sub>) and nitrogen dioxide (NO<sub>2</sub>) was assessed in 370 women three months before and during pregnancy using monitoring stations. Personal exposure to four volatile organic compounds (VOCs) was measured in a subsample of 56 non-smoking women with a diffusive air sampler during the second trimester of pregnancy. Cord blood was analyzed at birth by multi-parameter flow cytometry to determine lymphocyte subsets.</p> <p>Results</p> <p>Among other immunophenotypic changes in cord blood, decreases in the CD4+CD25+ T-cell percentage of 0.82% (p = 0.01), 0.71% (p = 0.04), 0.88% (p = 0.02), and 0.59% (p = 0.04) for a 10 μg/m<sup>3 </sup>increase in PM<sub>10 </sub>levels three months before and during the first, second and third trimester of pregnancy, respectively, were observed after adjusting for confounders. A similar decrease in CD4+CD25+ T-cell percentage was observed in association with personal exposure to benzene. A similar trend was observed between NO<sub>2 </sub>exposure and CD4+CD25+ T-cell percentage; however the association was stronger between NO<sub>2 </sub>exposure and an increased percentage of CD8+ T-cells.</p> <p>Conclusions</p> <p>These data suggest that maternal exposure to air pollution before and during pregnancy may alter the immune competence in offspring thus increasing the child's risk of developing health conditions later in life, including asthma and allergies.</p

    DNA immunoprecipitation semiconductor sequencing (DIP-SC-seq) as a rapid method to generate genome wide epigenetic signatures

    Get PDF
    Modification of DNA resulting in 5-methylcytosine (5 mC) or 5-hydroxymethylcytosine (5hmC) has been shown to influence the local chromatin environment and affect transcription. Although recent advances in next generation sequencing technology allow researchers to map epigenetic modifications across the genome, such experiments are often time-consuming and cost prohibitive. Here we present a rapid and cost effective method of generating genome wide DNA modification maps utilising commercially available semiconductor based technology (DNA immunoprecipitation semiconductor sequencing; “DIP-SC-seq”) on the Ion Proton sequencer. Focussing on the 5hmC mark we demonstrate, by directly comparing with alternative sequencing strategies, that this platform can successfully generate genome wide 5hmC patterns from as little as 500 ng of genomic DNA in less than 4 days. Such a method can therefore facilitate the rapid generation of multiple genome wide epigenetic datasets

    High-performance liquid chromatography–tandem mass spectrometry in the identification and determination of phase I and phase II drug metabolites

    Get PDF
    Applications of tandem mass spectrometry (MS/MS) techniques coupled with high-performance liquid chromatography (HPLC) in the identification and determination of phase I and phase II drug metabolites are reviewed with an emphasis on recent papers published predominantly within the last 6 years (2002–2007) reporting the employment of atmospheric pressure ionization techniques as the most promising approach for a sensitive detection, positive identification and quantitation of metabolites in complex biological matrices. This review is devoted to in vitro and in vivo drug biotransformation in humans and animals. The first step preceding an HPLC-MS bioanalysis consists in the choice of suitable sample preparation procedures (biomatrix sampling, homogenization, internal standard addition, deproteination, centrifugation, extraction). The subsequent step is the right optimization of chromatographic conditions providing the required separation selectivity, analysis time and also good compatibility with the MS detection. This is usually not accessible without the employment of the parent drug and synthesized or isolated chemical standards of expected phase I and sometimes also phase II metabolites. The incorporation of additional detectors (photodiode-array UV, fluorescence, polarimetric and others) between the HPLC and MS instruments can result in valuable analytical information supplementing MS results. The relation among the structural changes caused by metabolic reactions and corresponding shifts in the retention behavior in reversed-phase systems is discussed as supporting information for identification of the metabolite. The first and basic step in the interpretation of mass spectra is always the molecular weight (MW) determination based on the presence of protonated molecules [M+H]+ and sometimes adducts with ammonium or alkali-metal ions, observed in the positive-ion full-scan mass spectra. The MW determination can be confirmed by the [M-H]- ion for metabolites providing a signal in negative-ion mass spectra. MS/MS is a worthy tool for further structural characterization because of the occurrence of characteristic fragment ions, either MSn analysis for studying the fragmentation patterns using trap-based analyzers or high mass accuracy measurements for elemental composition determination using time of flight based or Fourier transform mass analyzers. The correlation between typical functional groups found in phase I and phase II drug metabolites and corresponding neutral losses is generalized and illustrated for selected examples. The choice of a suitable ionization technique and polarity mode in relation to the metabolite structure is discussed as well
    corecore