28,040 research outputs found

    Optimization of micromachined relex klystrons for operation at terahertz frequencies

    Get PDF
    New micromachining techniques now provide us with the technology to fabricate reflex klystron oscillators with dimensions suitable for operation in the terahertz region of the electromagnetic spectrum. For the success of these devices, accurate designs are required since the optimization of certain parameters is critical to obtaining useful amounts of ac power. Classical models for device design have long been in existence, but these are no longer valid at terahertz frequencies. For this reason, we have developed a simulation tool, specifically aimed at the design of terahertz frequency reflex klystrons. The tool, based on the Monte Carlo algorithm, includes loss mechanisms and takes into account the main peculiarities expected for device operation at terahertz frequencies. In this study, the tool is used to study the influence of the electron beam aperture angle and cavity dimensions (particularly the grid spacing) on ac power generation. The results demonstrate that aperture angles of less than 10 are necessary for the optimization of output power. It is also found that the power output is highly sensitive to the distance between the grids

    Structural changes at the semiconductor-insulator phase transition in the single layered La0.5Sr1.5MnO4 perovskite

    Get PDF
    The semiconductor-insulator phase transition of the single-layer manganite La0.5Sr1.5MnO4 has been studied by means of high resolution synchrotron x-ray powder diffraction and resonant x-ray scattering at the Mn K edge. We conclude that a concomitant structural transition from tetragonal I4/mmm to orthorhombic Cmcm phases drives this electronic transition. A detailed symmetry-mode analysis reveals that condensation of three soft modes -Delta_2(B2u), X1+(B2u) and X1+(A)- acting on the oxygen atoms accounts for the structural transformation. The Delta_2 mode leads to a pseudo Jahn-Teller distortion (in the orthorhombic bc-plane only) on one Mn site (Mn1) whereas the two X1+ modes produce an overall contraction of the other Mn site (Mn2) and expansion of the Mn1 one. The X1+ modes are responsible for the tetragonal superlattice (1/2,1/2,0)-type reflections in agreement with a checkerboard ordering of two different Mn sites. A strong enhancement of the scattered intensity has been observed for these superlattice reflections close to the Mn K edge, which could be ascribed to some degree of charge disproportion between the two Mn sites of about 0.15 electrons. We also found that the local geometrical anisotropy of the Mn1 atoms and its ordering originated by the condensed Delta_2 mode alone perfectly explains the resonant scattering of forbidden (1/4,1/4,0)-type reflections without invoking any orbital ordering.Comment: 3 tables and 10 figures; accepted in Phys. Rev.

    Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations

    Full text link
    In this paper we explore the transmission properties of single subwavelength apertures perforated in thin metallic films flanked by asymmetric configurations of periodic arrays of indentations. It is shown how the corrugation in the input side can be used to transmit selectively only two different wavelengths. Also, by tuning the geometrical parameters defining the corrugation of the output side, these two chosen wavelengths can emerge from the structure as two very narrow beams propagating at well-defined directions. This new ability of structured metals can be used as a base to build micron-sized wavelength de-multiplexers.Comment: Accepted for publication in Photonics and Nanostructure

    Multifractality of quantum wave packets

    Full text link
    We study a version of the mathematical Ruijsenaars-Schneider model, and reinterpret it physically in order to describe the spreading with time of quantum wave packets in a system where multifractality can be tuned by varying a parameter. We compare different methods to measure the multifractality of wave packets, and identify the best one. We find the multifractality to decrease with time until it reaches an asymptotic limit, different from the mulifractality of eigenvectors, but related to it, as is the rate of the decrease. Our results could guide the study of experimental situations where multifractality is present in quantum systems.Comment: 6 pages, 4 figures, final version including a new figure (figure 1

    Extraordinary transverse magneto-optical Kerr effect in a superlens

    Get PDF
    It has been shown that a slab of a negative index material can behave as a superlens enhancing the imaging resolution beyond the wavelength limit. We show here that if such a slab possesses in addition some magneto-optical activity, it could act as an ideal optical filter and exhibit an extraordinary transverse magneto-optical Kerr effect. Moreover, we show that losses, which spoil the imaging resolution of these lenses, are a necessary ingredient to observe this effect.Comment: 5 pages, 6 figure

    Sigma pole position and errors of a once and twice subtracted dispersive analysis of pi-pi scattering data

    Get PDF
    We show how the new precise data on kaon decays together with forward dispersion relations, sum rules and once- and twice-subtracted Roy's equations allow for a precise determination of the sigma meson pole position. We present a comparison and a study of the different sources of uncertainties when using either once- or twice-subtracted Roy's equations to analyze the data. Finally we present a preliminary determination of the sigma pole from the constrained dispersive data analysis.Comment: 4 pages, 6 figures. Contribution to the proceedings of the QCD08 14th International QCD Conference. 7-12th July 2008 Montpellier (France); one reference removed, changed errors in Eqs (4), (5) and (7
    • …
    corecore