63 research outputs found

    On the Solutions of Generalized Bogomolny Equations

    Full text link
    Generalized Bogomolny equations are encountered in the localization of the topological N=4 SYM theory. The boundary conditions for 't Hooft and surface operators are formulated by giving a model solution with some special singularity. In this note we consider the generalized Bogomolny equations on a half space and construct model solutions for the boundary 't Hooft and surface operators. It is shown that for the 't Hooft operator the equations reduce to the open Toda chain for arbitrary simple gauge group. For the surface operators the solutions of interest are rational solutions of a periodic non-abelian Toda system.Comment: 16 pages, no figure

    Meromorphic differentials with imaginary periods on degenerating hyperelliptic curves

    Get PDF
    We provide a direct and explicit proof that imaginary (real) normalized differentials of the second kind with prescribed polar part do not develop additional singularities as the underlying hyperelliptic Riemann surface degenerates in an arbitrary way

    Constant mean curvature surfaces in AdS_3

    Get PDF
    We construct constant mean curvature surfaces of the general finite-gap type in AdS_3. The special case with zero mean curvature gives minimal surfaces relevant for the study of Wilson loops and gluon scattering amplitudes in N=4 super Yang-Mills. We also analyze properties of the finite-gap solutions including asymptotic behavior and the degenerate (soliton) limit, and discuss possible solutions with null boundaries.Comment: 19 pages, v2: minor corrections, to appear in JHE

    Numerical instability of the Akhmediev breather and a finite-gap model of it

    Full text link
    In this paper we study the numerical instabilities of the NLS Akhmediev breather, the simplest space periodic, one-mode perturbation of the unstable background, limiting our considerations to the simplest case of one unstable mode. In agreement with recent theoretical findings of the authors, in the situation in which the round-off errors are negligible with respect to the perturbations due to the discrete scheme used in the numerical experiments, the split-step Fourier method (SSFM), the numerical output is well-described by a suitable genus 2 finite-gap solution of NLS. This solution can be written in terms of different elementary functions in different time regions and, ultimately, it shows an exact recurrence of rogue waves described, at each appearance, by the Akhmediev breather. We discover a remarkable empirical formula connecting the recurrence time with the number of time steps used in the SSFM and, via our recent theoretical findings, we establish that the SSFM opens up a vertical unstable gap whose length can be computed with high accuracy, and is proportional to the inverse of the square of the number of time steps used in the SSFM. This neat picture essentially changes when the round-off error is sufficiently large. Indeed experiments in standard double precision show serious instabilities in both the periods and phases of the recurrence. In contrast with it, as predicted by the theory, replacing the exact Akhmediev Cauchy datum by its first harmonic approximation, we only slightly modify the numerical output. Let us also remark, that the first rogue wave appearance is completely stable in all experiments and is in perfect agreement with the Akhmediev formula and with the theoretical prediction in terms of the Cauchy data.Comment: 27 pages, 8 figures, Formula (30) at page 11 was corrected, arXiv admin note: text overlap with arXiv:1707.0565

    On the Hamiltonian formulation of the trigonometric spin Ruijsenaars-Schneider system

    Get PDF
    We suggest a Hamiltonian formulation for the spin Ruijsenaars–Schneider system in the trigonometric case. Within this interpretation, the phase space is obtained by a quasi-Hamiltonian reduction performed on (the cotangent bundle to) a representation space of a framed Jordan quiver. For arbitrary quivers, analogous varieties were introduced by Crawley-Boevey and Shaw, and their interpretation as quasi-Hamiltonian quotients was given by Van den Bergh. Using Van den Bergh’s formalism, we construct commuting Hamiltonian functions on the phase space and identify one of the flows with the spin Ruijsenaars–Schneider system. We then calculate all the Poisson brackets between local coordinates, thus answering an old question of Arutyunov and Frolov. We also construct a complete set of commuting Hamiltonians and integrate all the flows explicitly

    Minimal Liouville gravity correlation numbers from Douglas string equation

    Get PDF
    We continue the study of (q, p) Minimal Liouville Gravity with the help of Douglas string equation. We generalize the results of [1,2], where Lee-Yang series (2, 2s + 1) was studied, to (3, 3s + p 0) Minimal Liouville Gravity, where p 0 = 1, 2. We demonstrate that there exist such coordinates \u3c4 m,n on the space of the perturbed Minimal Liouville Gravity theories, in which the partition function of the theory is determined by the Douglas string equation. The coordinates \u3c4 m,n are related in a non-linear fashion to the natural coupling constants \u3bb m,n of the perturbations of Minimal Lioville Gravity by the physical operators O m,n . We find this relation from the requirement that the correlation numbers in Minimal Liouville Gravity must satisfy the conformal and fusion selection rules. After fixing this relation we compute three- and four-point correlation numbers when they are not zero. The results are in agreement with the direct calculations in Minimal Liouville Gravity available in the literature [3-5]. \ua9 2014 The Author(s)
    • …
    corecore