2,121 research outputs found

    Engineered swift equilibration of a Brownian particle

    Get PDF
    A fundamental and intrinsic property of any device or natural system is its relaxation time relax, which is the time it takes to return to equilibrium after the sudden change of a control parameter [1]. Reducing tautau relax , is frequently necessary, and is often obtained by a complex feedback process. To overcome the limitations of such an approach, alternative methods based on driving have been recently demonstrated [2, 3], for isolated quantum and classical systems [4--9]. Their extension to open systems in contact with a thermostat is a stumbling block for applications. Here, we design a protocol,named Engineered Swift Equilibration (ESE), that shortcuts time-consuming relaxations, and we apply it to a Brownian particle trapped in an optical potential whose properties can be controlled in time. We implement the process experimentally, showing that it allows the system to reach equilibrium times faster than the natural equilibration rate. We also estimate the increase of the dissipated energy needed to get such a time reduction. The method paves the way for applications in micro and nano devices, where the reduction of operation time represents as substantial a challenge as miniaturization [10]. The concepts of equilibrium and of transformations from an equilibrium state to another, are cornerstones of thermodynamics. A textbook illustration is provided by the expansion of a gas, starting at equilibrium and expanding to reach a new equilibrium in a larger vessel. This operation can be performed either very slowly by a piston, without dissipating energy into the environment, or alternatively quickly, letting the piston freely move to reach the new volume

    Inhibition of constitutive and cxc-chemokine-induced NF-κB activity potentiates ansamycin-based HSP90-inhibitor cytotoxicity in castrate-resistant prostate cancer cells

    Get PDF
    Background: We determined how CXC-chemokine signalling and necrosis factor-B (NF-B) activity affected heat-shock protein 90 (Hsp90) inhibitor (geldanamycin (GA) and 17-allylamino-demethoxygeldanamycin (17-AAG)) cytotoxicity in castrate-resistant prostate cancer (CRPC).Methods:Geldanamycin and 17-AAG toxicity, together with the CXCR2 antagonist AZ10397767 or NF-B inhibitor BAY11-7082, was assessed by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay in two CRPC lines, DU145 and PC3. Flow cytometry quantified apoptotic or necrosis profiles. Necrosis factor-B activity was determined by luciferase readouts or indirectly by quantitative PCR and ELISA-based determination of CXCL8 expression.Results:Geldanamycin and 17-AAG reduced PC3 and DU145 cell viability, although PC3 cells were less sensitive. Addition of AZ10397767 increased GA (e.g., PC3 IC 20: from 1.670.4 to 0.180.2 nM) and 17-AAG (PC3 IC 20: 43.77.8 to 0.641.8 nM) potency in PC3 but not DU145 cells. Similarly, BAY11-7082 increased the potency of 17-AAG in PC3 but not in DU145 cells, correlating with the elevated constitutive NF-B activity in PC3 cells. AZ10397767 increased 17-AAG-induced apoptosis and necrosis and decreased NF-B activity/CXCL8 expression in 17-AAG-treated PC3 cells.Conclusion:Ansamycin cytotoxicity is enhanced by inhibiting NF-B activity and/or CXC-chemokine signalling in CRPC cells. Detecting and/or inhibiting NF-B activity may aid the selection and treatment response of CRPC patients to Hsp90 inhibitors.</p

    Global warming and arctic terns: Estimating climate change impacts on the world's longest migration

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: Tracking data: The tracking data that were collected and support the findings of this study are available in the Seabird Tracking Database at 2356146398 https://data.seabirdtracking.org/dataset, reference number 1905. Additional tracking data that support the findings of this study are openly available in Dryad at https://doi.org/10.5061/dryad.d6080nt and available upon request at https://data.seabirdtracking.org/dataset/739. Environmental variables: The data that support the findings of this study are openly available in JASMIN at https://jasmin.ac.uk/. All CMIP6 model output is freely available on the Earth System Grid Federation (https://esgf.llnl.gov/). Global ocean biogeochemistry hindcast simulations are available on the Copernicus Marine Database (https://resources.marine.copernicus.eu/).Climate change is one of the top three global threats to seabirds, particularly species that visit polar regions. Arctic terns migrate between both polar regions annually and rely on productive marine areas to forage, on sea ice for rest and foraging, and prevailing winds during flight. Here, we report 21st-century trends in environmental variables affecting arctic terns at key locations along their Atlantic/Indian Ocean migratory flyway during the non-breeding seasons, identified through tracking data. End-of-century climate change projections were derived from Earth System Models and multi-model means calculated in two Shared Socioeconomic Pathways: ‘middle-of-the-road’ and ‘fossil-fuelled development’ scenarios. Declines in North Atlantic primary production emerge as a major impact to arctic terns likely to affect their foraging during the 21st century under a ‘fossil-fuelled development’ scenario. Minimal changes are, however, projected at three other key regions visited by arctic terns (Benguela Upwelling, Subantarctic Indian Ocean and the Southern Ocean). Southern Ocean sea ice extent is likely to decline, but the magnitude of change and potential impacts on tern survival are uncertain. Small changes (<1 m s−1) in winds are projected in both scenarios, but with minimal likely impacts on migration routes and duration. However, Southern Ocean westerlies are likely to strengthen and contract closer to the continent, which may require arctic terns to shift routes or flight strategies. Overall, we find minor effects of climate change on the migration of arctic terns, with the exception of poorer foraging in the North Atlantic. However, given that arctic terns travel over huge spatial scales and live for decades, they integrate minor changes in conditions along their migration routes such that the sum effect may be greater than the parts. Meeting carbon emission targets is vital to slow these end-of-century climatic changes and minimise extinction risk for a suite of polar species.Natural Environment Research Council (NERC)German Federal Ministry of Education and Research (BMBF)University of BristolScience and Technology Facilities Council (STFC)National Geographi

    Towards a consistent mechanism of emulsion polymerization—new experimental details

    Get PDF
    The application of atypical experimental methods such as conductivity measurements, optical microscopy, and nonstirred polymerizations to investigations of the ‘classical’ batch ab initio emulsion polymerization of styrene revealed astonishing facts. The most important result is the discovery of spontaneous emulsification leading to monomer droplets even in the quiescent styrene in water system. These monomer droplets with a size between a few and some hundreds of nanometers, which are formed by spontaneous emulsification as soon as styrene and water are brought into contact, have a strong influence on the particle nucleation, the particle morphology, and the swelling of the particles. Experimental results confirm that micelles of low-molecular-weight surfactants are not a major locus of particle nucleation. Brownian dynamics simulations show that the capture of matter by the particles strongly depends on the polymer volume fraction and the size of the captured species (primary free radicals, oligomers, single monomer molecules, or clusters)

    Use of RNAlater in fluorescence-activated cell sorting (FACS) reduces the fluorescence from GFP but not from DsRed

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flow cytometry utilizes signals from fluorescent markers to separate targeted cell populations for gene expression studies. However, the stress of the FACS process could change normal gene expression profiles. RNAlater could be used to stop such changes in original gene expression profiles through its ability to denature RNase and other proteins. The normal conformational structure of fluorescent proteins must be maintained in order to fluoresce. Whether or not RNAlater would affect signals from different types of intrinsic fluorescent proteins is crucial to its use in flow cytometry; this question has not been investigated in detail.</p> <p>Findings</p> <p>To address this question, we analyzed the effect of RNAlater on fluorescence intensity of GFP, YFP, DsRed and small fluorescent molecules attached to secondary antibodies (Cy2 and Texas-Red) when used in flow cytometry. FACS results were confirmed with fluorescence microscopy. Our results showed that exposure of YFP and GFP containing cells to RNAlater reduces the intensity of their fluorescence to such an extent that separation of such labeled cells is difficult if not impossible. In contrast, signals from DsRed2, Cy2 and Texas-Red were not affected by RNAlater treatment. In addition, the background fluorescence and clumping of dissociated cells are altered by RNAlater treatment.</p> <p>Conclusions</p> <p>When considering gene expression studies using cell sorting with RNAlater, DsRed is the fluorescent protein of choice while GFP/YFP have severe limitations because of their reduced fluorescence. It is necessary to examine the effects of RNAlater on signals from fluorescent markers and the physical properties (e.g., clumping) of the cells before considering its use in cell sorting.</p

    Dexamethasone potentiates the antiangiogenic activity of docetaxel in castration-resistant prostate cancer

    Get PDF
    We sought to characterise whether dexamethasone (DEX) may enhance tumour response to docetaxel in in vitro and in vivo models of metastatic prostate cancer (CaP). In vitro experiments conducted on PC3 and human bone marrow endothelial cells (hBMECs) determined that administration of DEX (10 nM) reduced constitutive nuclear factor-κB (NF-κB) activity, decreasing interleukin (IL)-8, CXCL1 and VEGF gene expression in PC3 cells. Dexamethasone also attenuated docetaxel-induced NF-κB and activator protein-1 transcription and reduced docetaxel-promoted expression/secretion of IL-8 and CXCL1 in PC3 and hBMECs. Although DEX failed to enhance docetaxel cytotoxicity on PC3 cells, DEX potentiated the antiangiogenic activity of docetaxel in vitro, further reducing vessel area and vessel length in developing endothelial tubes (P<0.05). Docetaxel had a potent antiangiogenic activity in the dorsal skin flap-implanted PC3 tumours in vivo. Small blood vessel formation was further suppressed in tumours co-treated with docetaxel and DEX, substantiated by an increased average vessel diameter and segment length and a decreased number of branch points in the residual tumour vasculature (P<0.001). Our data show that DEX potentiates the antiangiogenic activity of docetaxel, suggesting a putative mechanism for the palliative and survival benefits of these agents in metastatic CaP

    Association of Killer Cell Immunoglobulin-Like Receptor Genes with Hodgkin's Lymphoma in a Familial Study

    Get PDF
    BACKGROUND: Epstein-Barr virus (EBV) is the major environmental factor associated with Hodgkin's lymphoma (HL), a common lymphoma in young adults. Natural killer (NK) cells are key actors of the innate immune response against viruses. The regulation of NK cell function involves activating and inhibitory Killer cell Immunoglobulin-like receptors (KIRs), which are expressed in variable numbers on NK cells. Various viral and virus-related malignant disorders have been associated with the presence/absence of certain KIR genes in case/control studies. We investigated the role of the KIR cluster in HL in a family-based association study. METHODOLOGY: We included 90 families with 90 HL index cases (age 16–35 years) and 255 first-degree relatives (parents and siblings). We developed a procedure for reconstructing full genotypic information (number of gene copies) at each KIR locus from the standard KIR gene content. Out of the 90 collected families, 84 were informative and suitable for further analysis. An association study was then carried out with specific family-based analysis methods on these 84 families. PRINCIPAL FINDINGS: Five KIR genes in strong linkage disequilibrium were found significantly associated with HL. Refined haplotype analysis showed that the association was supported by a dominant protective effect of KIR3DS1 and/or KIR2DS1, both of which are activating receptors. The odds ratios for developing HL in subjects with at least one copy of KIR3DS1 or KIR2DS1 with respect to subjects with neither of these genes were 0.44[95% confidence interval 0.23–0.85] and 0.42[0.21–0.85], respectively. No significant association was found in a tentative replication case/control study of 68 HL cases (age 18–71 years). In the familial study, the protective effect of KIR3DS1/KIR2DS1 tended to be stronger in HL patients with detectable EBV in blood or tumour cells. CONCLUSIONS: This work defines a template for family-based association studies based on full genotypic information for the KIR cluster, and provides the first evidence that activating KIRs can have a protective role in HL

    On-line mass spectrometry: membrane inlet sampling

    Get PDF
    Significant insights into plant photosynthesis and respiration have been achieved using membrane inlet mass spectrometry (MIMS) for the analysis of stable isotope distribution of gases. The MIMS approach is based on using a gas permeable membrane to enable the entry of gas molecules into the mass spectrometer source. This is a simple yet durable approach for the analysis of volatile gases, particularly atmospheric gases. The MIMS technique strongly lends itself to the study of reaction flux where isotopic labeling is employed to differentiate two competing processes; i.e., O2 evolution versus O2 uptake reactions from PSII or terminal oxidase/rubisco reactions. Such investigations have been used for in vitro studies of whole leaves and isolated cells. The MIMS approach is also able to follow rates of isotopic exchange, which is useful for obtaining chemical exchange rates. These types of measurements have been employed for oxygen ligand exchange in PSII and to discern reaction rates of the carbonic anhydrase reactions. Recent developments have also engaged MIMS for online isotopic fractionation and for the study of reactions in inorganic systems that are capable of water splitting or H2 generation. The simplicity of the sampling approach coupled to the high sensitivity of modern instrumentation is a reason for the growing applicability of this technique for a range of problems in plant photosynthesis and respiration. This review offers some insights into the sampling approaches and the experiments that have been conducted with MIMS

    Deciphering von Hippel-Lindau (VHL/Vhl)-Associated Pancreatic Manifestations by Inactivating Vhl in Specific Pancreatic Cell Populations

    Get PDF
    The von Hippel-Lindau (VHL) syndrome is a pleomorphic familial disease characterized by the development of highly vascularized tumors, such as hemangioblastomas of the central nervous system, pheochromocytomas, renal cell carcinomas, cysts and neuroendocrine tumors of the pancreas. Up to 75% of VHL patients are affected by VHL-associated pancreatic lesions; however, very few reports in the published literature have described the cellular origins and biological roles of VHL in the pancreas. Since homozygous loss of Vhl in mice resulted in embryonic lethality, this study aimed to characterize the functional significance of VHL in the pancreas by conditionally inactivating Vhl utilizing the Cre/LoxP system. Specifically, Vhl was inactivated in different pancreatic cell populations distinguished by their roles during embryonic organ development and their endocrine lineage commitment. With Cre recombinase expression directed by a glucagon promoter in α-cells or an insulin promoter in β-cells, we showed that deletion of Vhl is dispensable for normal functions of the endocrine pancreas. In addition, deficiency of VHL protein (pVHL) in terminally differentiated α-cells or β-cells is insufficient to induce pancreatic neuroendocrine tumorigenesis. Most significantly, we presented the first mouse model of VHL-associated pancreatic disease in mice lacking pVHL utilizing Pdx1-Cre transgenic mice to inactivate Vhl in pancreatic progenitor cells. The highly vascularized microcystic adenomas and hyperplastic islets that developed in Pdx1-Cre;Vhl f/f homozygous mice exhibited clinical features similar to VHL patients. Establishment of three different, cell-specific Vhl knockouts in the pancreas have allowed us to provide evidence suggesting that VHL is functionally important for postnatal ductal and exocrine pancreas, and that VHL-associated pancreatic lesions are likely to originate from progenitor cells, not mature endocrine cells. The novel model systems reported here will provide the basis for further functional and genetic studies to define molecular mechanisms involved in VHL-associated pancreatic diseases
    corecore