15,208 research outputs found

    Vertical distribution of ozone and the variation of tropopause heights based on ozonesonde and satellite observations

    Get PDF
    The distribution of atmospheric ozone is nonuniform both in space and time. Local ozone concentration vary with altitude, latitude, longitude, and season. Two year ozonesonde data, January 1981 to December 1982, observed at four Canadian stations and 2.5 year backscattered ultraviolet experiment data on the Nimbus-4 satellite, April 1970 to August 1972, observed over five American stations were used to study the relationship between the total ozone, vertical height distribution of the ozone mixing ratio, vertical height distribution of half total ozone, and the local tropopause height. The results show that there is a postive correlation between total ozone in Dobson Units and the tropopause height in terms of atmospheric pressure. This result suggests that local intrusion of the statosphere into the troposphere, or the local decreasing of tropopause height could occur if there is a local increasing of total ozone. A comparison of the vertical height distribution of the ozone mixing ratio, the modified pressure height of half total ozone and the tropopause height shows that the pressure height of an ozone mixing ratio of 0.3 micrograms/g, and the modified pressure height of half total ozone are very well correlated with the tropopause pressure height

    Severe storm initiation and development from satellite infrared imagery and Rawinsonde data

    Get PDF
    The geographical distribution of potential temperatures, mixing ratio, and streamlines of flow patterns at 850, 700, and 500 mb heights are used to understand the prestorm convection and the horizontal convergence of moisture. From the analysis of 21 tornadoes the following conclusions are reached: (1) Strong horizontal convergence of moisture appeared at the 850, 700, and 500 mb levels in the area 12 hours before the storm formation; (2) An abundantly moist atmosphere below 3 km (700 mb) becomes convectively unstable during the time period between 12 and 24 hours before the initiation of the severe storms; (3) Strong winds veering with height with direction parallel to the movement of a dryline, surface fronts, etc; (4) During a 36-hour period, a tropopause height in the areas of interest is lowest at the time of tornadic cloud formation; (5) A train of gravity waves is detected before and during the cloud formation period. Rapid-scan infrared imagery provides near real-time information on the life cycle of the storm which can be summarized as follows: (1) Enhanced convection produced an overshooting cloud top penetrating above the tropopause, making the mass density of the overshooting cloud much greater than the mass density of the surrounding air; (2) The overshooting cloud top collapsed at the end of the mature stage of the cloud development; (3) The tornado touchdown followed the collapse of the overshooting cloud top

    A theoretical model of the wave particle interaction of plasma in space

    Get PDF
    A theoretical model, based on the kinetic theory for the perturbation of plasma in the magnetosphere, is proposed to study the observed disturbances which are caused by both natural and artificial sources that generate wave-like perturbations propagating around the globe. The proposed model covers the wave propagation through a media of transitional (from collisional to collisionless) fully ionized magnetoactive plasma. A systematic formulation of the problem is presented and the method of solution for the transitional model of magnetosphere is discussed. The possible emission of hydromagnetic waves in the magnetosphere during the quiet and disturbed time are also discussed

    Multifluids description of dynamics of upper atmosphere

    Get PDF
    A multifluids model to investigate ionospheric dynamics was established on kinetic theory. Its resultant equations are used to examine the following dynamic problems in the gamma region of 80-2000 Km of the ionosphere: (1) propagation of acoustic modes in the 500-2,000 Km of the ionosphere (two fluid model); (2) the relation between the cross field plasma drift instabilities and type I and type II ionospheric irregularities; and (3) time dependent neutral wind structure and horizontal pressure gradient

    Characteristics and performance of the variable polarity plasma arc welding process used in the Space Shuttle external tank

    Get PDF
    Significant advantages of the Variable Polarity Plasma Arc (VPPA) Welding Process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. Flow profiles and power distribution of argon plasma gas as a working fluid to produce plasma arc jet in the VPPA welding process was analyzed. Major loss of heat transfer for flow through the nozzle is convective heat transfer; for the plasma jet flow between the outlet of the nozzle and workpiece is radiative heat transfer; and for the flow through the keyhole of the workpiece is convective heat transfer. The majority of the power absorbed by the keyhole of the workpiece is used for melting the solid metal workpiece into a molten metallic puddle. The crown and root widths and the crown and root heights can be predicted. An algorithm for promoting automatic control of flow parameters and the dimensions of the final product of the welding specification to be used for the VPPA Welding System operated at MSFC are provided

    Gravity wave initiated convection

    Get PDF
    The vertical velocity of convection initiated by gravity waves was investigated. In one particular case, the convective motion-initiated and supported by the gravity wave-induced activity (excluding contributions made by other mechanisms) reached its maximum value about one hour before the production of the funnel clouds. In another case, both rawinsonde and geosynchronous satellite imagery were used to study the life cycles of severe convective storms. Cloud modelling with input sounding data and rapid-scan imagery from GOES were used to investigate storm cloud formation, development and dissipation in terms of growth and collapse of cloud tops, as well as, the life cycles of the penetration of overshooting turrets above the tropopause. The results based on these two approaches are presented and discussed

    Spectroscopic study of combustion diagnostics on hydroxyl radicals

    Get PDF
    Experimental observations of propane-air flames were performed. Measurements of hydroxyl (OH) radical concentration were made using resonance line absorption techniques. A microwave-pumped low pressure discharge in argon and water vapor is employed to produce strong OH radical band radiation in the 308 nm region. This radiation is transmitted through the plume and absorption data are taken at various radical positions using an optical multichannel analyzer. This absorption data is used to compute OH number density using a model for the absorption band characteristics as a function of temperature based on an atlas of line strengths. A numerical computation of flow fields, temperature profile and OH number density is carried out by using a technique of computational fluid dynamics (CFD). The results of CFD computation are good compared with experimental observation with a good agreement

    Numerical studies of the surface tension effect of cryogenic liquid helium

    Get PDF
    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by both the gravity gradient and jitter accelerations applicable to scientific spacecraft which is eligible to carry out spinning motion and/or slew motion for the purpose of performing scientific observation during the normal spacecraft operation is investigated. An example is given with Gravity Probe-B (GP-B) spacecraft which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics has been based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers, have been derived

    Cloud physics laboratory project science and applications working group

    Get PDF
    The conditions of the expansion chamber under zero gravity environment were simulated. The following three branches of fluid mechanics simulation under low gravity environment were accomplished: (1) oscillation of the water droplet which characterizes the nuclear oscillation in nuclear physics, bubble oscillation of two phase flow in chemical engineering, and water drop oscillation in meteorology; (2) rotation of the droplet which characterizes nuclear fission in nuclear physics, formation of binary stars and rotating stars in astrophysics, and breakup of the water droplet in meteorology; and (3) collision and coalescence of the water droplets which characterizes nuclear fusion in nuclear physics and processes of rain formation in meteorology

    Material processing of convection-driven flow field and temperature distribution under oblique gravity

    Get PDF
    A set of mathematical formulation is adopted to study vapor deposition from source materials driven by heat transfer process under normal and oblique directions of gravitational acceleration with extremely low pressure environment of 10(exp -2) mm Hg. A series of time animation of the initiation and development of flow and temperature profiles during the course of vapor deposition has been obtained through the numerical computation. Computations show that the process of vapor deposition has been accomplished by the transfer of vapor through a fairly complicated flow pattern of recirculation under normal direction gravitational acceleration. It is obvious that there is no way to produce a homogeneous thin crystalline films with fine grains under such a complicated flow pattern of recirculation with a non-uniform temperature distribution under normal direction gravitational acceleration. There is no vapor deposition due to a stably stratified medium without convection for reverse normal direction gravitational acceleration. Vapor deposition under oblique direction gravitational acceleration introduces a reduced gravitational acceleration in vertical direction which is favorable to produce a homogeneous thin crystalline films. However, oblique direction gravitational acceleration also induces an unfavorable gravitational acceleration along horizontal direction which is responsible to initiate a complicated flow pattern of recirculation. In other words, it is necessary to carry out vapor deposition under a reduced gravity in the future space shuttle experiments with extremely low pressure environment to process vapor deposition with a homogeneous crystalline films with fine grains. Fluid mechanics simulation can be used as a tool to suggest most optimistic way of experiment with best setup to achieve the goal of processing best nonlinear optical materials
    corecore