42,398 research outputs found
A Unified Gravity-Electroweak Model Based on a Generalized Yang-Mills Framework
Gravitational and electroweak interactions can be unified in analogy with the
unification in the Weinberg-Salam theory. The Yang-Mills framework is
generalized to include space-time translational group T(4), whose generators
T_{\mu}(=\p/\p x^{\mu}) do not have constant matrix representations. By
gauging in flat space-time, we have a new
tensor field which universally couples to all particles and
anti-particles with the same constant , which has the dimension of length.
In this unified model, the T(4) gauge symmetry dictates that all wave equations
of fermions, massive bosons and the photon in flat space-time reduce to a
Hamilton-Jacobi equation with the same `effective Riemann metric tensor' in the
geometric-optics limit. Consequently, the results are consistent with
experiments. We demonstrated that the T(4) gravitational gauge field can be
quantized in inertial frames.Comment: 12 pages. To be published in "Modern Physics Letters A
White holes and eternal black holes
We investigate isolated white holes surrounded by vacuum, which correspond to
the time reversal of eternal black holes that do not evaporate. We show that
isolated white holes produce quasi- thermal Hawking radiation. The time
reversal of this radiation, incident on a black hole precursor, constitutes a
special preparation that will cause the black hole to become eternal.Comment: 5 pages, 2 figures, revtex; revised version to appear in Classical
and Quantum Gravit
A Fortran computer code for the calculation of unsteady supersonic flow field by the method of perturbation
Fortran computer code for analysis of unsteady supersonic flow field around oscillating body of revolutio
A Laboratory Plasma Experiment for Studying Magnetic Dynamics of Accretion Discs and Jets
This work describes a laboratory plasma experiment and initial results which
should give insight into the magnetic dynamics of accretion discs and jets. A
high-speed multiple-frame CCD camera reveals images of the formation and
helical instability of a collimated plasma, similar to MHD models of disc jets,
and also plasma detachment associated with spheromak formation, which may have
relevance to disc winds and flares. The plasmas are produced by a planar
magnetized coaxial gun. The resulting magnetic topology is dependent on the
details of magnetic helicity injection, namely the force-free state eigenvalue
alpha_gun imposed by the coaxial gun.Comment: accepted for publication in MNRA
Study of magnetic helicity injection via plasma imaging using a high-speed digital camera
The evolution of a plasma generated by a novel planar coaxial gun is photographed using a state-of-the-art digital camera, which captures eight time-resolved images per discharge. This experiment is designed to study the fundamental physics of magnetic helicity injection, which is an important issue in fusion plasma confinement, as well as solar and astrophysical phenomena such as coronal mass ejections and accretion disk dynamics. The images presented in this paper are not only beautiful but provide a powerful way to understand the global dynamics of the plasma
Effective interactions between star polymers
We study numerically the effective pair potential between star polymers with
equal arm lengths and equal number of arms. The simulations were done for
the soft core Domb-Joyce model on the simple cubic lattice, to minimize
corrections to scaling and to allow for an unlimited number of arms. For the
sampling, we used the pruned-enriched Rosenbluth method (PERM). We find that
the potential is much less soft than claimed in previous papers, in particular
for . While we verify the logarithmic divergence of , with
being the distance between the two cores, predicted by Witten and Pincus, we
find for that the Mayer function is hardly distinguishable from that for
a Gaussian potential.Comment: 5 pages, 5 figure
- …