875 research outputs found

    Calibration Methods of Laser-Induced Breakdown Spectroscopy

    Get PDF
    Laser-induced breakdown spectroscopy (LIBS) has gained great attention over the past two decades due to its many advantages, such as needless sample preparation, capability of remote measurement and fast multielement simultaneous analysis. However, because of its inherent uncertainty features of plasma, it is still a big challenge for LIBS community worldwide to realize high sensitivity and accurate quantitative analysis. Currently, many chemometric analytical methods have been applied to LIBS calibration analysis, including univariate regression, multivariate regression, principal component regression (PCR), partial least squares regression (PLSR) and so on. In addition, appropriate sample and spectral pretreatment can effectively improve the analytical performance (i.e., limit of detection (LOD), accuracy and repeatability) of LIBS. In this chapter, we briefly summarize the progress of these calibration methods and their applications on LIBS and provide our recommendations

    New Impossible Differential Attacks of Reduced-Round Camellia-192 and Camellia-256

    Get PDF
    Camellia is a block cipher selected as a standard by ISO/IEC, which has been analyzed by a number of cryptanalysts. In this paper, we propose several 6-round impossible differential paths of Camellia with the FL/FL−1FL/FL^{-1} layer in the middle of them. With the impossible differential and a well-organized precomputational table, impossible differential attacks on 10-round Camellia-192 and 11-round Camellia-256 are given, and the time complexity are 21752^{175} and 2206.82^{206.8} respectively. An impossible differential attack on 15-round Camellia-256 without FL/FL−1FL/FL^{-1} layers and whitening is also be given, which needs about 2236.12^{236.1} encryptions. To the best of our knowledge, these are the best cryptanalytic results of Camellia-192/-256 with FL/FL−1FL/FL^{-1} layers and Camellia-256 without FL/FL−1FL/FL^{-1} layers to date

    Near-Collision Attack on the Step-Reduced Compression Function of Skein-256

    Get PDF
    The Hash function Skein is one of the 5 finalists of NIST SHA-3 competition. It is designed based on the threefish block cipher and it only uses three primitive operations: modular addition, rotation and bitwise XOR (ARX). In this paper, we combine two short differential paths to a long differential path using the modular differential technique. And we present the semi-free start near-collision attack up to the 32-step Skein-256 with the Hamming difference 51. The complexity of our attack is about 21052^{105}

    Chemical Synthesis and Applications of Colloidal Metal Phosphide Nanocrystals

    Get PDF
    Colloidal nanocrystals (NCs) have emerged as promising materials in optoelectronic devices and biological imaging application due to their tailorable properties through size, shape, and composition. Among these NCs, metal phosphide is an important class, in parallel with metal chalcogenide. In this review, we summarize the recent progress regarding the chemical synthesis and applications of colloidal metal phosphide NCs. As the most important metal phosphide NCs, indium phosphide (InP) NCs have been intensively investigated because of their low toxicity, wide and tunable emission range from visible to the near-infrared region. Firstly, we give a brief overview of synthetic strategies to InP NCs, highlighting the benefit of employing zinc precursors as reaction additive and the importance of different phosphorus precursors to improve the quality of the InP NCs, in terms of size distribution, quantum yield, colloidal stability, and non-blinking behavior. Next, we discuss additional synthetic techniques to overcome the issues of lattice mismatch in the synthesis of core/shell metal phosphide NCs, by constructing an intermediate layer between core/shell or designing a shell with gradient composition in a radial direction. We also envision future research directions of InP NCs. The chemical synthesis of other metal phosphide NCs, such as II–V metal phosphide NCs (Cd3P2, Zn3P2) and transition metal phosphides NCs (Cu3P, FeP) is subsequently introduced. We finally discuss the potential applications of colloidal metal phosphide NCs in photovoltaics, light-emitting diodes, and lithium ion battery. An overview of several key applications based on colloidal metal phosphide NCs is provided at the end

    Genetic immunization with Hantavirus vaccine combining expression of G2 glycoprotein and fused interleukin-2

    Get PDF
    In this research, we developed a novel chimeric HTNV-IL-2-G2 DNA vaccine plasmid by genetically linking IL-2 gene to the G2 segment DNA and tested whether it could be a candidate vaccine. Chimeric gene was first expressed in eukaryotic expression system pcDNA3.1 (+). The HTNV-IL-2-G2 expressed a 72 kDa fusion protein in COS-7 cells. Meanwhile, the fusion protein kept the activity of its parental proteins. Furthermore, BALB/c mice were vaccinated by the chimeric gene. ELISA, cell microculture neutralization test in vitro were used to detect the humoral immune response in immunized BALB/c mice. Lymphocyte proliferation assay was used to detect the cellular immune response.- The results showed that the chimeric gene could simultaneously evoke specific antibody against G2 glycoprotein and IL-2. And the immunized mice of every group elicited neutralizing antibodies with different titers. Lymphocyte proliferation assay results showed that the stimulation indexes of splenocytes of chimeric gene to G2 and IL-2 were significantly higher than that of other groups. Our results suggest that IL-2-based HTNV G2 DNA can induce both humoral and cellular immune response specific for HTNV G2 and can be a candidate DNA vaccine for HTNV infection
    • …
    corecore