319 research outputs found

    Time from pre-eclampsia diagnosis to delivery affects future health prospects of children

    Get PDF
    BACKGROUND AND OBJECTIVES: Pre-eclampsia often has detrimental health effects for pregnant women and their fetuses, but whether exposure in the womb has long-term health-consequences for children as they grow up remains poorly understood. We assessed overall morbidity of children following exposure to either mild or severe pre-eclampsia up to 30 years after birth and related disease risks to duration of exposure, i.e. the time from diagnosis to delivery. METHODOLOGY: We did a registry-based retrospective cohort study in Denmark covering the years 1979–2009, using the separate diagnoses of mild and severe pre-eclampsia and the duration of exposure as predictor variables for specific and overall risks of later disease. We analysed 3 537 525 diagnoses for 14 disease groups, accumulated by 758 524 singleton children, after subdividing deliveries in six gestational age categories, partialing out effects of eight potentially confounding factors. RESULTS: Exposure to mild pre-eclampsia appeared to have consistent negative effects on health later in life, although only a few specific disease cases remained significant after corrections for multiple testing. Morbidity risks associated with mild pre-eclampsia were of similar magnitude as those associated with severe pre-eclampsia. Apart from this overall trend in number of diagnoses incurred across disease groups, hazard ratios for several disorders also increased with the duration of exposure, including disorders related to the metabolic syndrome. CONCLUSIONS AND IMPLICATIONS: Maternal pre-eclampsia has lasting effects on offspring health and differences between exposure to severe and mild pre-eclampsia appear to be less than previously assumed. Our results suggest that it would be prudent to include the long-term health prospects of children in the complex clinical management of mild pre-eclampsia

    Whole-genome amplified DNA from stored dried blood spots is reliable in high resolution melting curve and sequencing analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of dried blood spots (DBS) samples in genomic workup has been limited by the relative low amounts of genomic DNA (gDNA) they contain. It remains to be proven that whole genome amplified DNA (wgaDNA) from stored DBS samples, constitutes a reliable alternative to gDNA.</p> <p>We wanted to compare melting curves and sequencing results from wgaDNA derived from DBS samples with gDNA derived from whole blood.</p> <p>Methods</p> <p>gDNA was extracted from whole blood obtained from 10 patients with lone atrial fibrillation (mean age 22.3 years). From their newborn DBS samples, stored at -24°C, genomic DNA was extracted and whole-genome amplified in triplicates. Using high resolution melting curve analysis and direct sequencing in both wgaDNA and gDNA samples, all coding regions and adjacent intron regions of the genes <it>SCN5A </it>and <it>KCNA5 </it>were investigated.</p> <p>Results</p> <p>Altered melting curves was present in 85 of wgaDNA samples and 81 of gDNA samples. Sequence analysis identified a total of 31 variants in the 10 wgaDNA samples. The same 31 variants were found in the exact same pattern of samples in the gDNA group. There was no false positive or negative sequence variation in the wgaDNA group.</p> <p>Conclusions</p> <p>The use of DNA amplified in triplicates from DBS samples is reliable and can be used both for high resolution curve melting analysis as well as direct sequence analysis. DBS samples therefore can serve as an alternative to whole blood in sequence analysis.</p

    Genotyping Performance Assessment of Whole Genome Amplified DNA with Respect to Multiplexing Level of Assay and Its Period of Storage

    Get PDF
    Whole genome amplification can faithfully amplify genomic DNA (gDNA) with minimal bias and substantial genome coverage. Whole genome amplified DNA (wgaDNA) has been tested to be workable for high-throughput genotyping arrays. However, issues about whether wgaDNA would decrease genotyping performance at increasing multiplexing levels and whether the storage period of wgaDNA would reduce genotyping performance have not been examined. Using the Sequenom MassARRAY iPLEX Gold assays, we investigated 174 single nucleotide polymorphisms for 3 groups of matched samples: group 1 of 20 gDNA samples, group 2 of 20 freshly prepared wgaDNA samples, and group 3 of 20 stored wgaDNA samples that had been kept frozen at −70°C for 18 months. MassARRAY is a medium-throughput genotyping platform with reaction chemistry different from those of high-throughput genotyping arrays. The results showed that genotyping performance (efficiency and accuracy) of freshly prepared wgaDNA was similar to that of gDNA at various multiplexing levels (17-plex, 21-plex, 28-plex and 36-plex) of the MassARRAY assays. However, compared with gDNA or freshly prepared wgaDNA, stored wgaDNA was found to give diminished genotyping performance (efficiency and accuracy) due to potentially inferior quality. Consequently, no matter whether gDNA or wgaDNA was used, better genotyping efficiency would tend to have better genotyping accuracy

    Risk of schizophrenia in relation to parental origin and genome-wide divergence

    Get PDF
    Background. Second-generation immigrants have an increased risk of schizophrenia, a finding that still lacks a satisfactory explanation. Various operational definitions of second-generation immigrants have been used, including foreign parental country of birth. However, with increasing global migration, it is not clear that parental country of birth necessarily is informative with regard to ethnicity. We compare two independently collected measures of parental foreign ethnicity, parental foreign country of birth versus genetic divergence, based on genome-wide genotypic data, to access which measure most efficiently captures the increased risk of schizophrenia among second-generation immigrants residing in Denmark. Method. A case-control study covering all children born in Denmark since 1981 included 892 cases of schizophrenia and 883 matched controls. Genetic divergence was assessed using principal component analyses of the genotypic data. Independently, parental foreign country of birth was assessed using information recorded prospectively in the Danish Civil Registration System. We compared incidence rate ratios of schizophrenia associated with these two independently collected measures of parental foreign ethnicity. Results. People with foreign-born parents had a significantly increased risk of schizophrenia [relative risk (RR) 1.94 (95% confidence intervals (CI) 1.41-2.65)]. Genetically divergent persons also had a significant increased risk [RR 2.43 ( 95% CI 1.55-3.82)]. Mutual adjustment of parental foreign country of birth and genetic divergence showed no difference between these measures with regard to their potential impact on the results. Conclusions. In terms of RR of schizophrenia, genetic divergence and parental foreign country of birth are interchangeable entities, and both entities have validity with regard to identifying second-generation immigrants

    Genome-wide scans using archived neonatal dried blood spot samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identification of disease susceptible genes requires access to DNA from numerous well-characterised subjects. Archived residual dried blood spot samples from national newborn screening programs may provide DNA from entire populations and medical registries the corresponding clinical information. The amount of DNA available in these samples is however rarely sufficient for reliable genome-wide scans, and whole-genome amplification may thus be necessary. This study assess the quality of DNA obtained from different amplification protocols by evaluating fidelity and robustness of the genotyping of 610,000 single nucleotide polymorphisms, using the Illumina Infinium HD Human610-Quad BeadChip. Whole-genome amplified DNA from 24 neonatal dried blood spot samples stored between 15 to 25 years was tested, and high-quality genomic DNA from 8 of the same individuals was used as reference.</p> <p>Results</p> <p>Using 3.2 mm disks from dried blood spot samples the optimal DNA-extraction and amplification protocol resulted in call-rates between 99.15% – 99.73% (mean 99.56%, N = 16), and conflicts with reference DNA in only three per 10,000 genotype calls.</p> <p>Conclusion</p> <p>Whole-genome amplified DNA from archived neonatal dried blood spot samples can be used for reliable genome-wide scans and is a cost-efficient alternative to collecting new samples.</p

    Polygenic risk score, parental socioeconomic status, family history of psychiatric disorders, and the risk for schizophrenia: a Danish population-based study and meta-analysis

    Get PDF
    IMPORTANCE Schizophrenia has a complex etiology influenced both by genetic and nongenetic factors but disentangling these factors is difficult. OBJECTIVE To estimate (1) how strongly the risk for schizophrenia relates to the mutual effect of the polygenic risk score, parental socioeconomic status, and family history of psychiatric disorders; (2) the fraction of cases that could be prevented if no one was exposed to these factors; (3) whether family background interacts with an individual's genetic liability so that specific subgroups are particularly risk prone; and (4) to what extent a proband's genetic makeup mediates the risk associated with familial background. DESIGN, SETTINGS, AND PARTICIPANTS We conducted a nested case-control study based onDanish population-based registers. The study consisted of 866 patients diagnosed as having schizophrenia between January 1, 1994, and December 31, 2006, and 871 matched control individuals. Genome-wide data and family psychiatric and socioeconomic background information were obtained from neonatal biobanks and national registers. Results from a separate meta-analysis (34 600 cases and 45 968 control individuals) were applied to calculate polygenic risk scores. EXPOSURES Polygenic risk scores, parental socioeconomic status, and family psychiatric history. MAIN OUTCOMES AND MEASURES Odds ratios (ORs), attributable risks, liability R2 values, and proportions mediated. RESULTS Schizophrenia was associated with the polygenic risk score (OR, 8.01; 95%CI, 4.53-14.16 for highest vs lowest decile), socioeconomic status (OR, 8.10; 95%CI, 3.24-20.3 for 6 vs no exposures), and a history of schizophrenia/psychoses (OR, 4.18; 95%CI, 2.57-6.79). The R2 values were 3.4%(95%CI, 2.1-4.6) for the polygenic risk score, 3.1%(95%CI, 1.9-4.3) for parental socioeconomic status, and 3.4%(95%CI, 2.1-4.6) for family history. Socioeconomic status and psychiatric history accounted for 45.8% (95%CI, 36.1-55.5) and 25.8% (95%CI, 21.2-30.5) of cases, respectively. There was an interaction between the polygenic risk score and family history (P = .03). A total of 17.4%(95%CI, 9.1-26.6) of the effect associated with family history of schizophrenia/psychoses was mediated through the polygenic risk score. CONCLUSIONS AND RELEVANCE Schizophrenia was associated with the polygenic risk score, family psychiatric history, and socioeconomic status. Our study demonstrated that family history of schizophrenia/psychoses is partly mediated through the individual's genetic liability

    Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci.

    Get PDF
    Genetic and environmental components as well as their interaction contribute to the risk of schizophrenia, making it highly relevant to include environmental factors in genetic studies of schizophrenia. This study comprises genome-wide association (GWA) and follow-up analyses of all individuals born in Denmark since 1981 and diagnosed with schizophrenia as well as controls from the same birth cohort. Furthermore, we present the first genome-wide interaction survey of single nucleotide polymorphisms (SNPs) and maternal cytomegalovirus (CMV) infection. The GWA analysis included 888 cases and 882 controls, and the follow-up investigation of the top GWA results was performed in independent Danish (1396 cases and 1803 controls) and German-Dutch (1169 cases, 3714 controls) samples. The SNPs most strongly associated in the single-marker analysis of the combined Danish samples were rs4757144 in ARNTL (P=3.78 × 10(-6)) and rs8057927 in CDH13 (P=1.39 × 10(-5)). Both genes have previously been linked to schizophrenia or other psychiatric disorders. The strongest associated SNP in the combined analysis, including Danish and German-Dutch samples, was rs12922317 in RUNDC2A (P=9.04 × 10(-7)). A region-based analysis summarizing independent signals in segments of 100 kb identified a new region-based genome-wide significant locus overlapping the gene ZEB1 (P=7.0 × 10(-7)). This signal was replicated in the follow-up analysis (P=2.3 × 10(-2)). Significant interaction with maternal CMV infection was found for rs7902091 (P(SNP × CMV)=7.3 × 10(-7)) in CTNNA3, a gene not previously implicated in schizophrenia, stressing the importance of including environmental factors in genetic studies
    corecore