26 research outputs found

    A Typology and Comparison of Triangular Projectile Points from Central Indiana

    Get PDF

    Identification of Rho GTPases implicated in terminal differentiation of muscle cells in ascidia

    No full text
    International audienceBackground information. Members of the Rho GTPase family mediate changes in the actin cytoskeleton and are also implicated in developmental processes, including myogenesis. Nevertheless, a comprehensive analysis of these proteins during myofibrillogenesis has never been performed in any organism. Results. Using the ascidian model to identify the role of Rho GTPases on myofibrillogenesis, we show that transcripts for all Rho GTPases are detected in muscle cells of the embryo. We find that activation of RhoA, TC10 and Cdc42 (cell division cycle 42) disturbs the polarity of muscle cells, whereas that of other Rho GTPases induced cell positioning defects. Moreover, dominant negative version of five Rho GTPases, RhoA, Rac2, RCL2 (Rac- and Cdc42-like 2), TC10 and WRCH (Wnt-1 responsive Cdc42 homologue), impaired the formation of mature myofibrils. Conclusions. Taken together, our results show that several Rho GTPase-dependent pathways are required to control the spatial localization of muscle cells in the embryo and to coordinate myofibril assembly. This stresses the importance of analysing the entire Rho family when studying a new biological process

    Prevalence of Clinical and Subclinical Myocarditis in Competitive Athletes With Recent SARS-CoV-2 Infection: Results From the Big Ten COVID-19 Cardiac Registry

    No full text
    Importance: Myocarditis is a leading cause of sudden death in competitive athletes. Myocardial inflammation is known to occur with SARS-CoV-2. Different screening approaches for detection of myocarditis have been reported. The Big Ten Conference requires comprehensive cardiac testing including cardiac magnetic resonance (CMR) imaging for all athletes with COVID-19, allowing comparison of screening approaches. Objective: To determine the prevalence of myocarditis in athletes with COVID-19 and compare screening strategies for safe return to play. Design, Setting, and Participants: Big Ten COVID-19 Cardiac Registry principal investigators were surveyed for aggregate observational data from March 1, 2020, through December 15, 2020, on athletes with COVID-19. For athletes with myocarditis, presence of cardiac symptoms and details of cardiac testing were recorded. Myocarditis was categorized as clinical or subclinical based on the presence of cardiac symptoms and CMR findings. Subclinical myocarditis classified as probable or possible myocarditis based on other testing abnormalities. Myocarditis prevalence across universities was determined. The utility of different screening strategies was evaluated. Exposures: SARS-CoV-2 by polymerase chain reaction testing. Main Outcome and Measure: Myocarditis via cardiovascular diagnostic testing. Results: Representing 13 universities, cardiovascular testing was performed in 1597 athletes (964 men [60.4%]). Thirty-seven (including 27 men) were diagnosed with COVID-19 myocarditis (overall 2.3%; range per program, 0%-7.6%); 9 had clinical myocarditis and 28 had subclinical myocarditis. If cardiac testing was based on cardiac symptoms alone, only 5 athletes would have been detected (detected prevalence, 0.31%). Cardiac magnetic resonance imaging for all athletes yielded a 7.4-fold increase in detection of myocarditis (clinical and subclinical). Follow-up CMR imaging performed in 27 (73.0%) demonstrated resolution of T2 elevation in all (100%) and late gadolinium enhancement in 11 (40.7%). Conclusions and Relevance: In this cohort study of 1597 US competitive athletes with CMR screening after COVID-19 infection, 37 athletes (2.3%) were diagnosed with clinical and subclinical myocarditis. Variability was observed in prevalence across universities, and testing protocols were closely tied to the detection of myocarditis. Variable ascertainment and unknown implications of CMR findings underscore the need for standardized timing and interpretation of cardiac testing. These unique CMR imaging data provide a more complete understanding of the prevalence of clinical and subclinical myocarditis in college athletes after COVID-19 infection. The role of CMR in routine screening for athletes safe return to play should be explored further

    Discovery of 1‑(3,3-Dimethylbutyl)-3-(2-fluoro-4-methyl-5-(7-methyl-2-(methylamino)­pyrido[2,3‑<i>d</i>]pyrimidin-6-yl)phenyl)urea (LY3009120) as a Pan-RAF Inhibitor with Minimal Paradoxical Activation and Activity against <i>BRAF</i> or <i>RAS</i> Mutant Tumor Cells

    No full text
    The RAS-RAF-MEK-MAPK cascade is an essential signaling pathway, with activation typically mediated through cell surface receptors. The kinase inhibitors vemurafenib and dabrafenib, which target oncogenic BRAF V600E, have shown significant clinical efficacy in melanoma patients harboring this mutation. Because of paradoxical pathway activation, both agents were demonstrated to promote growth and metastasis of tumor cells with <i>RAS</i> mutations in preclinical models and are contraindicated for treatment of cancer patients with <i>BRAF</i> WT background, including patients with <i>KRAS</i> or <i>NRAS</i> mutations. In order to eliminate the issues associated with paradoxical MAPK pathway activation and to provide therapeutic benefit to patients with <i>RAS</i> mutant cancers, we sought to identify a compound not only active against BRAF V600E but also wild type BRAF and CRAF. On the basis of its superior in vitro and in vivo profile, compound <b>13</b> was selected for further development and is currently being evaluated in phase I clinical studies
    corecore