446 research outputs found

    Multi-Output Gaussian Processes for Crowdsourced Traffic Data Imputation

    Full text link
    Traffic speed data imputation is a fundamental challenge for data-driven transport analysis. In recent years, with the ubiquity of GPS-enabled devices and the widespread use of crowdsourcing alternatives for the collection of traffic data, transportation professionals increasingly look to such user-generated data for many analysis, planning, and decision support applications. However, due to the mechanics of the data collection process, crowdsourced traffic data such as probe-vehicle data is highly prone to missing observations, making accurate imputation crucial for the success of any application that makes use of that type of data. In this article, we propose the use of multi-output Gaussian processes (GPs) to model the complex spatial and temporal patterns in crowdsourced traffic data. While the Bayesian nonparametric formalism of GPs allows us to model observation uncertainty, the multi-output extension based on convolution processes effectively enables us to capture complex spatial dependencies between nearby road segments. Using 6 months of crowdsourced traffic speed data or "probe vehicle data" for several locations in Copenhagen, the proposed approach is empirically shown to significantly outperform popular state-of-the-art imputation methods.Comment: 10 pages, IEEE Transactions on Intelligent Transportation Systems, 201

    Improving Care for Transgender Veterans Through Staff Education

    Get PDF
    The VHA Directive 1341 (2018a): Providing Health Care for Transgender and Intersex Veterans, outlines care for transgender patients. Staff members at the project site lacked knowledge of the directive and available resources, making their care of transgender veterans inefficient. The purpose of the project was to implement staff education about the directive and resources to increase transgender patient visits and access to care. The practice-focused question asked whether the development and implementation of staff education about the national directive and transgender services would affect the number of transgender patient visits in a 2-month period. The Iowa and Community Readiness Models provided structure for the practice change. The Community Readiness Assessment tool was used to assess staff education needs regarding transgender services. The results indicated that staff have knowledge about community experts, no knowledge about federal funding, and inadequate knowledge about support from staff and leaders, qualified professionals, and laws/practices. The staff education about Lesbian, Gay, Bisexual, Transgender (LGBT) resources tool was created and disseminated via meetings and e-mail. ICD-10 codes for gender identity disorder were evaluated for the number of transgender patient visits, which showed an increase in visits by 0.7 per month. Recommendations include continuing staff education during LGBT events and ICD-10 data reports. The implications of this study for positive social change include the potential to increase transgender patient visits to the site, which could lead to quality, comprehensive care to promote health and prevent disease

    Theory and simulation of quantum photovoltaic devices based on the non-equilibrium Green's function formalism

    Get PDF
    This article reviews the application of the non-equilibrium Green's function formalism to the simulation of novel photovoltaic devices utilizing quantum confinement effects in low dimensional absorber structures. It covers well-known aspects of the fundamental NEGF theory for a system of interacting electrons, photons and phonons with relevance for the simulation of optoelectronic devices and introduces at the same time new approaches to the theoretical description of the elementary processes of photovoltaic device operation, such as photogeneration via coherent excitonic absorption, phonon-mediated indirect optical transitions or non-radiative recombination via defect states. While the description of the theoretical framework is kept as general as possible, two specific prototypical quantum photovoltaic devices, a single quantum well photodiode and a silicon-oxide based superlattice absorber, are used to illustrated the kind of unique insight that numerical simulations based on the theory are able to provide.Comment: 20 pages, 10 figures; invited review pape

    Policy challenges for the pediatric rheumatology workforce: Part III. the international situation

    Get PDF
    Survival dominates current pediatric global health priorities. Diseases of poverty largely contribute to overall mortality in children under 5 years of age. Infectious diseases and injuries account for 75% of cause-specific mortality among children ages 5-14 years. Twenty percent of the world's population lives in extreme poverty (income below US $1.25/day). Within this population, essential services and basic needs are not met, including clean water, sanitation, adequate nutrition, shelter, access to health care, medicines and education. In this context, musculoskeletal disease comprises 0.1% of all-cause mortality in children ages 5-14 years. Worldwide morbidity from musculoskeletal disease remains generally unknown in the pediatric age group. This epidemiologic data is not routinely surveyed by international agencies, including the World Health Organization. The prevalence of pediatric rheumatic diseases based on data from developed nations is in the range of 2,500 - 3,000 cases per million children. Developing countries' needs for musculoskeletal morbidity are undergoing an epidemiologic shift to chronic conditions, as leading causes of pediatric mortality are slowly quelled

    The impacts of environmental warming on Odonata: a review

    Get PDF
    Climate change brings with it unprecedented rates of increase in environmental temperature, which will have major consequences for the earth's flora and fauna. The Odonata represent a taxon that has many strong links to this abiotic factor due to its tropical evolutionary history and adaptations to temperate climates. Temperature is known to affect odonate physiology including life-history traits such as developmental rate, phenology and seasonal regulation as well as immune function and the production of pigment for thermoregulation. A range of behaviours are likely to be affected which will, in turn, influence other parts of the aquatic ecosystem, primarily through trophic interactions. Temperature may influence changes in geographical distributions, through a shifting of species' fundamental niches, changes in the distribution of suitable habitat and variation in the dispersal ability of species. Finally, such a rapid change in the environment results in a strong selective pressure towards adaptation to cope and the inevitable loss of some populations and, potentially, species. Where data are lacking for odonates, studies on other invertebrate groups will be considered. Finally, directions for research are suggested, particularly laboratory studies that investigate underlying causes of climate-driven macroecological patterns

    Theory and simulation of photogeneration and transport in Si-SiOx superlattice absorbers

    Get PDF
    Si-SiOx superlattices are among the candidates that have been proposed as high band gap absorber material in all-Si tandem solar cell devices. Owing to the large potential barriers for photoexited charge carriers, transport in these devices is restricted to quantum-confined superlattice states. As a consequence of the finite number of wells and large built-in fields, the electronic spectrum can deviate considerably from the minibands of a regular superlattice. In this article, a quantum-kinetic theory based on the non-equilibrium Green's function formalism for an effective mass Hamiltonian is used for investigating photogeneration and transport in such devices for arbitrary geometry and operating conditions. By including the coupling of electrons to both photons and phonons, the theory is able to provide a microscopic picture of indirect generation, carrier relaxation, and inter-well transport mechanisms beyond the ballistic regime

    Nanopore-based kinetics analysis of individual antibody-channel and antibody-antigen interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The UNO/RIC Nanopore Detector provides a new way to study the binding and conformational changes of individual antibodies. Many critical questions regarding antibody function are still unresolved, questions that can be approached in a new way with the nanopore detector.</p> <p>Results</p> <p>We present evidence that different forms of channel blockade can be associated with the same antibody, we associate these different blockades with different orientations of "capture" of an antibody in the detector's nanometer-scale channel. We directly detect the presence of antibodies via reductions in channel current. Changes to blockade patterns upon addition of antigen suggest indirect detection of antibody/antigen binding. Similarly, DNA-hairpin anchored antibodies have been studied, where the DNA linkage is to the carboxy-terminus at the base of the antibody's Fc region, with significantly fewer types of (lengthy) capture blockades than was observed for free (un-bound) IgG antibody. The introduction of chaotropic agents and its effects on protein-protein interactions have also been observed.</p> <p>Conclusion</p> <p>Nanopore-based approaches may eventually provide a direct analysis of the complex conformational "negotiations" that occur upon binding between proteins.</p

    A Comparison of Stimulus Set Size on Tact Training for Children with Autism Spectrum Disorder

    Get PDF
    Previous studies on skill acquisition have taught targets in stimulus sets composed of different numbers of stimuli. Although the rationale for selection of a stimulus set size is not clear, the number of target stimuli trained within a set is a treatment decision for which there is limited empirical support. The current investigation compared the efficiency of tact training in 4 stimulus set sizes, each of which included 12 stimuli grouped into (a) 4 sets of 3 stimuli, (b) 3 sets of 4 stimuli, (c) 2 sets of 6 stimuli, and (d) 1 set of 12 stimuli. Results of all 4 participants with autism spectrum disorder show tact training with larger (i.e., 6 and 12) stimulus set sizes was more efficient than training with smaller (i.e., 3 and 4) stimulus set sizes
    corecore