3,099 research outputs found

    Society, science, and values

    Get PDF

    Society, science, and values

    Get PDF

    Ecological consequences of temperature regulation: Why might the mountain pygmy possum Burramys parvus need to hibernate near underground streams?

    Get PDF
    The mountain pygmy possum (Burramys parvus) is an endangered marsupial restricted to boulder fields in the Australian Alps, where it hibernates under the snow during winter. Understanding its habitat requirements is essential for conservation, so we examine here ecological implications of the thermal consequences of maintaining water balance during the hibernation season. Hibernating mountain pygmy possums arousing to consume water must either drink liquid water or consume snow. If they drink water, then the energy required to warm that water to body temperature(4.18 J g-1 °C-1) increases linearly with mass ingested. If they eat snow, then the energy required melt the snow (latent heat of fusion = 332 J g-1) and then warm it to body temperature is much higher than just drinking. For mountain pygmy possums, these energetic costs are a large proportion (up to 19%) of their average daily metabolic rate during the hibernation period and may dramatically shorten it. If mountain pygmy possums lose water equivalent to 5% of body mass before arousing to rehydrate, then the potential hibernation period is reduced by 30 days for consuming snow compared with 8.6 days for drinking water. The consequences of ingesting snow rather than liquid water are even more severe for juvenile possums. A reduction in the hibernation period can impact on the overwinter survival, a key factor determining demographics and population size. Therefore, habitats with subnivean access to liquid water during winter, such as those with subterranean streams running under boulder fields, may be of particular value

    On holographic thermalization and gravitational collapse of massless scalar fields

    Full text link
    In this paper we study thermalization in a strongly coupled system via AdS/CFT. Initially, the energy is injected into the system by turning on a spatially homogenous scalar source coupled to a marginal composite operator. The thermalization process is studied by numerically solving Einstein's equations coupled to a massless scalar field in the Poincare patch of AdS_5. We define a thermalization time t_T on the AdS side, which has an interpretation in terms of a spacelike Wilson loop in CFT. Here T is the thermal equilibrium temperature. We study both cases with the source turned on in short(Delta t = 1/T) durations. In the former case, the thermalization time t_T = g_t/T <= 1/T and the coefficient g_t = 0.73 in the limit Delta t <= 0.02/T. In the latter case, we find double- and multiple-collapse solutions, which may be interpreted as the gravity duals of two- or multi-stage thermalization in CFT. In all the cases our results indicate that such a strongly coupled system thermalizes in a typical time scale t_T=O(1)/T.Comment: 25 papers, 13 figures, Minor modifications, details of numerics added, references added, final version to appear in JHE

    Close-to-threshold Meson Production in Hadronic Interactions

    Full text link
    Studies of meson production at threshold in the hadron--hadron interaction began in the fifties when sufficient energies of accelerated protons were available. A strong interdependence between developments in accelerator physics, detector performance and theoretical understanding led to a unique vivid field of physics. Early experiments performed with bubble chambers revealed already typical ingredients of threshold studies, which were superseded by more complete meson production investigations at the nucleon beam facilities TRIUMF, LAMPF, PSI, LEAR and SATURNE. Currently, with the advent of the new cooler rings as IUCF, CELSIUS and COSY the field is entering a new domain of precision and the next step of further progress. The analysis of this new data in the short range limit permits a more fundamental consideration and a quantitative comparison of the production processes for different mesons in the few--body final states. The interpretation of the data take advantage of the fact that production reactions close-to-threshold are characterized by only a few degrees of freedom between a well defined combination of initial and exit channels. Deviations from predictions of phase-space controlled one-meson-exchange models are indications of new and exciting physics. Precision data on differential cross sections, isospin and spin observables -- partly but by no means adequately available -- are presently turning up on the horizon. There is work for the next years and excitement of the physics expected. Here we try to give a brief and at the same time comprehensive overview of this field of hadronic threshold production studies.Comment: 100 pages, Review article to be published in Prog. Part. Nucl. Phys. Vol. 49, issue 1 (2002

    State of the science 60th anniversary review

    Full text link
    No abstract.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/60971/1/23643_ftp.pd

    Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector

    Get PDF
    Results of a search for H → τ τ decays are presented, based on the full set of proton-proton collision data recorded by the ATLAS experiment at the LHC during 2011 and 2012. The data correspond to integrated luminosities of 4.5 fb−1 and 20.3 fb−1 at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV respectively. All combinations of leptonic (τ → `νν¯ with ` = e, µ) and hadronic (τ → hadrons ν) tau decays are considered. An excess of events over the expected background from other Standard Model processes is found with an observed (expected) significance of 4.5 (3.4) standard deviations. This excess provides evidence for the direct coupling of the recently discovered Higgs boson to fermions. The measured signal strength, normalised to the Standard Model expectation, of µ = 1.43 +0.43 −0.37 is consistent with the predicted Yukawa coupling strength in the Standard Model

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore