96 research outputs found

    Dr. Jekyll and Mr. Hyde: The Two Faces of the FUS/EWS/TAF15 Protein Family

    Get PDF
    FUS, EWS, and TAF15 form the FET family of RNA-binding proteins whose genes are found rearranged with various transcription factor genes predominantly in sarcomas and in rare hematopoietic and epithelial cancers. The resulting fusion gene products have attracted considerable interest as diagnostic and promising therapeutic targets. So far, oncogenic FET fusion proteins have been regarded as strong transcription factors that aberrantly activate or repress target genes of their DNA-binding fusion partners. However, the role of the transactivating domain in the context of the normal FET proteins is poorly defined, and, therefore, our knowledge on how FET aberrations impact on tumor biology is incomplete. Since we believe that a full understanding of aberrant FET protein function can only arise from looking at both sides of the coin, the good and the evil, this paper summarizes evidence for the central function of FET proteins in bridging RNA transcription, processing, transport, and DNA repair

    Progress in the Molecular Biology of Ewing Tumors

    Get PDF
    Purpose/results/discussion. Rearrangement of the EWS gene with an ETS oncogene by chromosomal translocation is a hallmark of the Ewing family of tumors (EFT). Detectability, incidence, tumor specificity and variability of this aberration have been matters of intense investigation in recent years. A number of related alterations have also been found in other malignancies. The common consequence of these gene rearrangements is the generation of an aberrant transcription factor. In EFT, the ETS partner is responsible for target recognition. However, synergistic and possibly tissue-restricted transcription factors interacting with either the EWS or the ETS portion may influence target selection. Minimal domains of both fusion partners were defined that have proved necessary for the in vitro transformation of murine fibroblasts. These functional studies suggest a role for aberrant transcriptional regulation of transforming target genes by the chimeric transcription factors. Also, fusion of the two unrelated protein domains may affect overall protein conformation and consequently DNA binding specificity. Recent evidence suggests that EWS, when fused to a transcription factor, interacts with different partners than germ-line EWS. Variability in EWS–ETS gene fusions has recently been demonstrated to correlate with clinical outcome. This finding may reflect functional differences of the individual chimeric transcription factors. Alternatively, type and availability of specific recombinases at different time-points of stem cell development or in different stem cell lineages may determine fusion type. Studies on EFT cell lines using EWS–ETS antagonists do suggest a rate-limiting essential role for the gene rearrangement in the self-renewal capacity of EFT cells. The presence of additional aberrations varying in number and type that may account for immortalization and full transformation is postulated. Knowledge about such secondary alterations may provide valuable prognostic markers that could be used for treatment stratification

    ESF-EMBO symposium "molecular biology and innovative therapies in sarcomas of childhood and adolescence" Sept 29–Oct 4, Polonia Castle Pultusk, Poland

    Get PDF
    Rhabdomyosarcoma (RMS) and Ewing sarcoma (ES) are among the most common pediatric sarcomas (Arndt et al., 2012). Despite sarcomas representing a highly heterogeneous group of tumors, ES and alveolar RMS (ARMS) typically share one common genetic characteristic, namely a specific chromosomal translocation (Helman and Meltzer, 2003; Lessnick and Ladanyi, 2012). These translocations generate fusion proteins, which are composed of two transcription factors (TF). Typically, one TF is a developmentally regulated factor that is essential for proper specification of a given lineage and provides the DNA-binding domain, while the partner TF contributes a transactivation domain that drives aberrant expression of target genes. Based on these common genetic characteristics, the first ESF-EMBO research conference entitled “Molecular Biology and Innovative Therapies in Sarcomas of Childhood and Adolescence” with special focus on RMS and ES was held at the Polonia Castle in Pultusk, Poland. The conference gathered 70 participants from more than 15 countries and several continents representing most research groups that are active in this field

    The Molecular Basis of Sarcoma

    Get PDF

    A Molecular Function Map of Ewing's Sarcoma

    Get PDF
    EWS-FLI1 is a chimeric ETS transcription factor that is, due to a chromosomal rearrangement, specifically expressed in Ewing's sarcoma family tumors (ESFT) and is thought to initiate the development of the disease. Previous genomic profiling experiments have identified EWS-FLI1-regulated genes and genes that discriminate ESFT from other sarcomas, but so far a comprehensive analysis of EWS-FLI1-dependent molecular functions characterizing this aggressive cancer is lacking.In this study, a molecular function map of ESFT was constructed based on an integrative analysis of gene expression profiling experiments following EWS-FLI1 knockdown in a panel of five ESFT cell lines, and on gene expression data from the same platform of 59 primary ESFT. Out of 80 normal tissues tested, mesenchymal progenitor cells (MPC) were found to fit the hypothesis that EWS-FLI1 is the driving transcriptional force in ESFT best and were therefore used as the reference tissue for the construction of the molecular function map. The interrelations of molecular pathways were visualized by measuring the similarity among annotated gene functions by gene sharing. The molecular function map highlighted distinct clusters of activities for EWS-FLI1 regulated genes in ESFT and revealed a striking difference between EWS-FLI1 up- and down-regulated genes: EWS-FLI1 induced genes mainly belong to cell cycle regulation, proliferation, and response to DNA damage, while repressed genes were associated with differentiation and cell communication.This study revealed that EWS-FLI1 combines by distinct molecular mechanisms two important functions of cellular transformation in one protein, growth promotion and differentiation blockage. By taking MPC as a reference tissue, a significant EWS-FLI1 signature was discovered in ESFT that only partially overlapped with previously published EWS-FLI1-dependent gene expression patterns, identifying a series of novel targets for the chimeric protein in ESFT. Our results may guide target selection for future ESFT specific therapies

    The second European interdisciplinary Ewing sarcoma research summit – A joint effort to deconstructing the multiple layers of a complex disease

    Get PDF
    Despite multimodal treatment, long term outcome for patients with Ewing sarcoma is still poor. The second “European interdisciplinary Ewing sarcoma research summit” assembled a large group of scientific experts in the field to discuss their latest unpublished findings on the way to the identification of novel therapeutic targets and strategies. Ewing sarcoma is characterized by a quiet genome with presence of an EWSR1-ETS gene rearrangement as the only and defining genetic aberration. RNA sequencing of recently described Ewing-like sarcomas with variant translocations identified them as biologically distinct diseases. Various presentations adressed mechanisms of EWS-ETS fusion protein activities with a focus on EWS-FLI1. Data were presented shedding light on the molecular underpinnings of genetic permissiveness to this disease uncovering interaction of EWS-FLI1 with recently discovered susceptibility loci. Epigenetic context as a consequence of the interaction between the oncoprotein, cell type, developmental stage, and tissue microenvironment emerged as dominant theme in the discussion of the molecular pathogenesis and inter- and intratumor heterogeneity of Ewing sarcoma, and the difficulty to generate animal models faithfully recapitulating the human disease. The problem of preclinical development of biologically targeted therapeutics was discussed and promising perspectives were offered from the study of novel in vitro models. Finally, it was concluded that in order to facilitate rapid pre-clinical and clinical development of novel therapies in Ewing sarcoma, the community needs a platform to maintain knowledge of unpublished results, systems and models used in drug testing and to continue the open dialogue initiated at the first two Ewing sarcoma summits.Unión Europea 261743(ENCCA)Unión Europea 259348 (ASSET

    C/EBPβ-1 promotes transformation and chemoresistance in Ewing sarcoma cells.

    Get PDF
    CEBPB copy number gain in Ewing sarcoma was previously shown to be associated with worse clinical outcome compared to tumors with normal CEBPB copy number, although the mechanism was not characterized. We employed gene knockdown and rescue assays to explore the consequences of altered CEBPB gene expression in Ewing sarcoma cell lines. Knockdown of EWS-FLI1 expression led to a decrease in expression of all three C/EBPβ isoforms while re-expression of EWS-FLI1 rescued C/EBPβ expression. Overexpression of C/EBPβ-1, the largest of the three C/EBPβ isoforms, led to a significant increase in colony formation when cells were grown in soft agar compared to empty vector transduced cells. In addition, depletion of C/EBPβ decreased colony formation, and re-expression of either C/EBPβ-1 or C/EBPβ-2 rescued the phenotype. We identified the cancer stem cell marker ALDH1A1 as a target of C/EBPβ in Ewing sarcoma. Furthermore, increased expression of C/EBPβ led to resistance to chemotherapeutic agents. In summary, we have identified CEBPB as an oncogene in Ewing sarcoma. Overexpression of C/EBPβ-1 increases transformation, upregulates expression of the cancer stem cell marker ALDH1A1, and leads to chemoresistance

    Identifying the druggable interactome of EWS-FLI1 reveals MCL-1 dependent differential sensitivities of Ewing sarcoma cells to apoptosis inducers

    Get PDF
    Ewing sarcoma (EwS) is an aggressive pediatric bone cancer in need of more effective therapies than currently available. Most research into novel targeted therapeutic approaches is focused on the fusion oncogene EWSR1-FLI1, which is the genetic hallmark of this disease. In this study, a broad range of 3,325 experimental compounds, among them FDA approved drugs and natural products, were screened for their effect on EwS cell viability depending on EWS-FLI1 expression. In a network-based approach we integrated the results from drug perturbation screens and RNA sequencing, comparing EWS-FLI1-high (normal expression) with EWS-FLI1-low (knockdown) conditions, revealing novel interactions between compounds and EWS-FLI1 associated biological processes. The top candidate list of druggable EWS-FLI1 targets included genes involved in translation, histone modification, microtubule structure, topoisomerase activity as well as apoptosis regulation. We confirmed our in silico results using viability and apoptosis assays, underlining the applicability of our integrative and systemic approach. We identified differential sensitivities of Ewing sarcoma cells to BCL-2 family inhibitors dependent on the EWS-FLI1 regulome including altered MCL-1 expression and subcellular localization. This study facilitates the selection of effective targeted approaches for future combinatorial therapies of patients suffering from Ewing sarcoma.(VLID)471264

    High-content drug screening in zebrafish xenografts reveals high efficacy of dual MCL-1/BCL-XL inhibition against Ewing sarcoma

    Full text link
    Ewing sarcoma is a pediatric bone and soft tissue cancer with an urgent need for new therapies to improve disease outcome. To identify effective drugs, phenotypic drug screening has proven to be a powerful method, but achievable throughput in mouse xenografts, the preclinical Ewing sarcoma standard model, is limited. Here, we explored the use of xenografts in zebrafish for high-throughput drug screening to discover new combination therapies for Ewing sarcoma. We subjected xenografts in zebrafish larvae to high-content imaging and subsequent automated tumor size analysis to screen single agents and compound combinations. We identified three drug combinations effective against Ewing sarcoma cells: Irinotecan combined with either an MCL-1 or an BCL-XL inhibitor and in particular dual inhibition of the anti-apoptotic proteins MCL-1 and BCL-XL, which efficiently eradicated tumor cells in zebrafish xenografts. We confirmed enhanced efficacy of dual MCL-1/BCL-XL inhibition compared to single agents in a mouse PDX model. In conclusion, high-content screening of small compounds on Ewing sarcoma zebrafish xenografts identified dual MCL-1/BCL-XL targeting as a specific vulnerability and promising therapeutic strategy for Ewing sarcoma, which warrants further investigation towards clinical application. Keywords: Anti-apoptotic protein inhibitors; Ewing sarcoma; High-content imaging; Phenotypic drug screening; Zebrafish xenograft

    CD133 expression in chemo-resistant Ewing sarcoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some human cancers demonstrate cellular hierarchies in which tumor-initiating cancer stem cells generate progeny cells with reduced tumorigenic potential. This cancer stem cell population is proposed to be a source of therapy-resistant and recurrent disease. Ewing sarcoma family tumors (ESFT) are highly aggressive cancers in which drug-resistant, relapsed disease remains a significant clinical problem. Recently, the cell surface protein CD133 was identified as a putative marker of tumor-initiating cells in ESFT. We evaluated ESFT tumors and cell lines to determine if high levels of CD133 are associated with drug resistance.</p> <p>Methods</p> <p>Expression of the CD133-encoding <it>PROM1 </it>gene was determined by RT-PCR in ESFT tumors and cell lines. CD133 protein expression was assessed by western blot, FACS and/or immunostaining. Cell lines were FACS-sorted into CD133+ and CD133- fractions and proliferation, colony formation in soft agar, and <it>in vivo </it>tumorigenicity compared. Chemosensitivity was measured using MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assays.</p> <p>Results</p> <p><it>PROM1 </it>expression was either absent or extremely low in most tumors. However, <it>PROM1 </it>was highly over-expressed in 4 of 48 cases. Two of the 4 patients with <it>PROM1 </it>over-expressing tumors rapidly succumbed to primary drug-resistant disease and two are long-term, event-free survivors. The expression of <it>PROM1 </it>in ESFT cell lines was similarly heterogeneous. The frequency of CD133+ cells ranged from 2-99% and, with one exception, no differences in the chemoresistance or tumorigenicity of CD133+ and CD133- cell fractions were detected. Importantly, however, the STA-ET-8.2 cell line was found to retain a cellular hierarchy in which relatively chemo-resistant, tumorigenic CD133+ cells gave rise to relatively chemo-sensitive, less tumorigenic, CD133- progeny.</p> <p>Conclusions</p> <p>Up to 10% of ESFT express high levels of <it>PROM1</it>. In some tumors and cell lines the CD133+ fraction is relatively more drug-resistant, while in others there is no apparent difference between CD133+ and CD133- cells. These studies reveal heterogeneity in <it>PROM1</it>/CD133 expression in ESFT tumors and cell lines and confirm that high levels of <it>PROM1 </it>expression are, in at least some cases, associated with chemo-resistant disease. Further studies are required to elucidate the contribution of <it>PROM1/</it>CD133 expressing cells to therapeutic resistance in a large, prospective cohort of primary ESFT.</p
    • …
    corecore