42 research outputs found

    Genotypic and Seasonal Variation in Plant Development and Yield Attributes in Tomato (Lycopersicon esculentum Mill.) Cultivars

    Get PDF
    Morphological attributes and yield of eight genotypes of tomato namely, J-5, Binatomato-5, BARItomato-7, CLN-2026, CLN-2366, CLN-2413, CLN-2418 and CLN-2443 were studied over three seasons. Effects of seasonal and genotypic variations and their combination on plant height, number of primary branches per plant, number of flower clusters per plant, number of fruit clusters per plant, number of fruits per plant, individual fruit weight, fruit yield were significant. Fruit yield and almost all the morphological attributes of tomato genotypes were at peak in winter followed by pre-winter and summer season. Over three seasons, the genotype CLN-2413 produced the highest fruit yield followed by BARI tomato-7 producing the tallest plants with maximum number of primary branches and the highest number of fruits per plant. The genotypes Binatomato-5, CLN-2026 and CLN-2418 ranked 3rd and CLN-2366 and CLN-2443 ranked 4th with respect to yield performance. The genotype J-5 produced the lowest number of fruits per plant and fruit yield. In winter, fruits number and yield were highest in CLN-2413 while BARI tomato-7 carried the statistically same rank

    Coronavirus disease 2019 and future pandemics: Impacts on livestock health and production and possible mitigation measures

    Get PDF
    The World Health Organization declared coronavirus disease 2019 (COVID-19) a pandemic on March 11, 2020. COVID-19, the current global health emergency, is wreaking havoc on human health systems and, to a lesser degree, on animals globally. The outbreak has continued since the first report of COVID-19 in China in December 2019, and the second and third waves of the outbreak have already begun in several countries. COVID-19 is expected to have adverse effects on crop production, food security, integrated pest control, tourism, the car industry, and other sectors of the global economy. COVID-19 induces a range of effects in livestock that is reflected economically since human health and livelihood are intertwined with animal health. We summarize the potentially harmful effects of COVID-19 on livestock and possible mitigation steps in response to this global outbreak. Mitigation of the negative effects of COVID-19 and future pandemics on livestock requires the implementation of current guidelines

    Sustainable Antibiotic-Free Broiler Meat Production: Current Trends, Challenges, and Possibilities in a Developing Country Perspective

    Get PDF
    Antibiotic-free broiler meat production is becoming increasingly popular worldwide due to consumer perception that it is superior to conventional broiler meat. Globally, broiler farming impacts the income generation of low-income households, helping to alleviate poverty and secure food in the countryside and in semi-municipal societies. For decades, antibiotics have been utilized in the poultry industry to prevent and treat diseases and promote growth. This practice contributes to the development of drug-resistant bacteria in livestock, including poultry, and humans through the food chain, posing a global public health threat. Additionally, consumer demand for antibiotic-free broiler meat is increasing. However, there are many challenges that need to be overcome by adopting suitable strategies to produce antibiotic-free broiler meat with regards to food safety and chicken welfare issues. Herein, we focus on the importance and current scenario of antibiotic use, prospects, and challenges in the production of sustainable antibiotic-free broiler meat, emphasizing broiler farming in the context of Bangladesh. Moreover, we also discuss the need for and challenges of antibiotic alternatives and provide a future outlook for antibiotic-free broiler meat production

    Households' perception of climate change and human health risks: A community perspective

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bangladesh has been identified as one of the most vulnerable countries in the world concerning the adverse effects of climate change (CC). However, little is known about the perception of CC from the community, which is important for developing adaptation strategies.</p> <p>Methods</p> <p>The study was a cross-sectional survey of respondents from two villages--one from the northern part and the other from the southern part of Bangladesh. A total of 450 households were selected randomly through multistage sampling completed a semi-structure questionnaire. This was supplemented with 12 focus group discussions (FGDs) and 15 key informant interviews (KIIs).</p> <p>Results</p> <p>Over 95 percent of the respondents reported that the heat during the summers had increased and 80.2 percent reported that rainfall had decreased, compared to their previous experiences. Approximately 65 percent reported that winters were warmer than in previous years but they still experienced very erratic and severe cold during the winter for about 5-7 days, which restricted their activities with very destructive effect on agricultural production, everyday life and the health of people. FGDs and KIIs also reported that overall winters were warmer. Eighty point two percent, 72.5 percent and 54.7 percent survey respondents perceived that the frequency of water, heat and cold related diseases/health problems, respectively, had increased compared to five to ten years ago. FGDs and KIIs respondents were also reported the same.</p> <p>Conclusions</p> <p>Respondents had clear perceptions about changes in heat, cold and rainfall that had occurred over the last five to ten years. Local perceptions of climate variability (CV) included increased heat, overall warmer winters, reduced rainfall and fewer floods. The effects of CV were mostly negative in terms of means of living, human health, agriculture and overall livelihoods. Most local perceptions on CV are consistent with the evidence regarding the vulnerability of Bangladesh to CC. Such findings can be used to formulate appropriate sector programs and interventions. The systematic collection of such information will allow scientists, researchers and policy makers to design and implement appropriate adaptation strategies for CC in countries that are especially vulnerable.</p

    Children’s and adolescents’ rising animal-source food intakes in 1990–2018 were impacted by age, region, parental education and urbanicity

    Get PDF
    Animal-source foods (ASF) provide nutrition for children and adolescents’ physical and cognitive development. Here, we use data from the Global Dietary Database and Bayesian hierarchical models to quantify global, regional and national ASF intakes between 1990 and 2018 by age group across 185 countries, representing 93% of the world’s child population. Mean ASF intake was 1.9 servings per day, representing 16% of children consuming at least three daily servings. Intake was similar between boys and girls, but higher among urban children with educated parents. Consumption varied by age from 0.6 at <1 year to 2.5 servings per day at 15–19 years. Between 1990 and 2018, mean ASF intake increased by 0.5 servings per week, with increases in all regions except sub-Saharan Africa. In 2018, total ASF consumption was highest in Russia, Brazil, Mexico and Turkey, and lowest in Uganda, India, Kenya and Bangladesh. These findings can inform policy to address malnutrition through targeted ASF consumption programmes.publishedVersio

    Incident type 2 diabetes attributable to suboptimal diet in 184 countries

    Get PDF
    The global burden of diet-attributable type 2 diabetes (T2D) is not well established. This risk assessment model estimated T2D incidence among adults attributable to direct and body weight-mediated effects of 11 dietary factors in 184 countries in 1990 and 2018. In 2018, suboptimal intake of these dietary factors was estimated to be attributable to 14.1 million (95% uncertainty interval (UI), 13.8–14.4 million) incident T2D cases, representing 70.3% (68.8–71.8%) of new cases globally. Largest T2D burdens were attributable to insufficient whole-grain intake (26.1% (25.0–27.1%)), excess refined rice and wheat intake (24.6% (22.3–27.2%)) and excess processed meat intake (20.3% (18.3–23.5%)). Across regions, highest proportional burdens were in central and eastern Europe and central Asia (85.6% (83.4–87.7%)) and Latin America and the Caribbean (81.8% (80.1–83.4%)); and lowest proportional burdens were in South Asia (55.4% (52.1–60.7%)). Proportions of diet-attributable T2D were generally larger in men than in women and were inversely correlated with age. Diet-attributable T2D was generally larger among urban versus rural residents and higher versus lower educated individuals, except in high-income countries, central and eastern Europe and central Asia, where burdens were larger in rural residents and in lower educated individuals. Compared with 1990, global diet-attributable T2D increased by 2.6 absolute percentage points (8.6 million more cases) in 2018, with variation in these trends by world region and dietary factor. These findings inform nutritional priorities and clinical and public health planning to improve dietary quality and reduce T2D globally.publishedVersio

    Estimating monthly and yearly dependable rainfall for different climatic zones of the world

    No full text
    The study has demonstrated that estimating monthly or yearly dependable rainfall is not an easy task, especially where rainfall data series are not available. The world is divided into four climatic zones namely: tropical, sub-tropical, mediterranean and temperate. The results showed that no single equation or procedure is quite adequate to describe the different climatic conditions of the world. Three procedures were developed for estimating yearly and monthly dependable rainfall for yearly/monthly rainfall data series. To develop the various procedures, first a frequency-analysis using the yearly/monthly rainfall data series was conducted by means of RAINBOW software. Secondly, the results from the frequency analysis were used in an Excel program to develop the various relationships between the coefficient of variation and the mean or the log (mean) rainfall for normal and log normal distributed rainfall data series. From the results of yearly rainfall data series, all climatic zones found to be normally distributed. On the other hand, all monthly rainfall data series were assumed to be log normally distributed

    An optimization framework using multiple economic models in grid computing: a switching mechanism

    No full text
    Grid computing solves computationally complex problems such as climate modelling in a cost effective and standardized way. It requires seamless collaboration of computational resources distributed across different administrative domains worldwide. However, distributed ownerships and heterogeneous (independent) nature of these resources impose a challenge to this collaboration. Since economic-based resource management approaches have been found efficient and sustainable for various distributed computing platforms such as Grid, significant efforts are being made to evaluate the effectiveness of various economic models for distributed resource management. Several economic models have been proposed for Grid computing based on both micro and macro-economic principles. In spite of the potential of economic-based resource management, there is no consensus on choosing a particular economic model for the Grid as different researchers have proposed different models in different times. Therefore, a comprehensive understanding about various economic models in the context of Grid computing is essential to discover the problem of choosing a common model. The primary contribution of this thesis in identifying this problem is the process of a survey on existing economic models in the Grid. The survey identifies that one model is different from another in terms of pricing methodology and working principle. Moreover, the survey claims the suitability of different models for different scenarios. For example, Bargaining economic model supports utility-based negotiation between a resource user and a resource provider (microeconomic), whereas Commodity Market Model is suitable for maintaining equilibrium between supply and demand of resources in the environment (macroeconomic). The major reason to this problem is the limitation of a single model to cope with large-scale dynamic characteristic of the Grid. This limitation demonstrates a need to analyze the effectiveness of different economic models in Grid resource management. Therefore, this thesis conducts an extensive experimental analysis on the five most widely proposed economic models in the Grid – Commodity Market, Bargaining, English Auction, Continuous Double Auction and Contract Net Protocol. The experimental results demonstrate the compatibility with existing literature that a single economic model is not suitable for all circumstances in a Grid’s life-cycle. A quantitative analysis on the performances of different economic models helps identify the regions (domains) where one model outperforms all the other models in different scenarios. This variation in performances shows the opportunity of designing an optimization framework through utilization of the potentials of different models in different scenarios based on the domains of strengths of the models. To facilitate the optimization process, an adaptive switching mechanism that dynamically switches from one economic model to another depending on the function needed to be optimized, has been developed. The roles and responsibilities of the Grid entities to adapt with changing scenarios (one model to another model) in a dynamic environment have been justified and presented. The thesis further provides formal definitions to these domains of strengths of individual models to ensure that the switching decision can be carried out without much delay and computational power. The effectiveness of the switching framework in distributed resource management has been evaluated through a series of experiments. The results of these experiments show that the switching model can bring promising outcomes in collaborating distributed resources in an economic Grid

    An optimization framework using multiple economic models in grid computing: a switching mechanism

    No full text
    Grid computing solves computationally complex problems such as climate modelling in a cost effective and standardized way. It requires seamless collaboration of computational resources distributed across different administrative domains worldwide. However, distributed ownerships and heterogeneous (independent) nature of these resources impose a challenge to this collaboration. Since economic-based resource management approaches have been found efficient and sustainable for various distributed computing platforms such as Grid, significant efforts are being made to evaluate the effectiveness of various economic models for distributed resource management. Several economic models have been proposed for Grid computing based on both micro and macro-economic principles. In spite of the potential of economic-based resource management, there is no consensus on choosing a particular economic model for the Grid as different researchers have proposed different models in different times. Therefore, a comprehensive understanding about various economic models in the context of Grid computing is essential to discover the problem of choosing a common model. The primary contribution of this thesis in identifying this problem is the process of a survey on existing economic models in the Grid. The survey identifies that one model is different from another in terms of pricing methodology and working principle. Moreover, the survey claims the suitability of different models for different scenarios. For example, Bargaining economic model supports utility-based negotiation between a resource user and a resource provider (microeconomic), whereas Commodity Market Model is suitable for maintaining equilibrium between supply and demand of resources in the environment (macroeconomic). The major reason to this problem is the limitation of a single model to cope with large-scale dynamic characteristic of the Grid. This limitation demonstrates a need to analyze the effectiveness of different economic models in Grid resource management. Therefore, this thesis conducts an extensive experimental analysis on the five most widely proposed economic models in the Grid – Commodity Market, Bargaining, English Auction, Continuous Double Auction and Contract Net Protocol. The experimental results demonstrate the compatibility with existing literature that a single economic model is not suitable for all circumstances in a Grid’s life-cycle. A quantitative analysis on the performances of different economic models helps identify the regions (domains) where one model outperforms all the other models in different scenarios. This variation in performances shows the opportunity of designing an optimization framework through utilization of the potentials of different models in different scenarios based on the domains of strengths of the models. To facilitate the optimization process, an adaptive switching mechanism that dynamically switches from one economic model to another depending on the function needed to be optimized, has been developed. The roles and responsibilities of the Grid entities to adapt with changing scenarios (one model to another model) in a dynamic environment have been justified and presented. The thesis further provides formal definitions to these domains of strengths of individual models to ensure that the switching decision can be carried out without much delay and computational power. The effectiveness of the switching framework in distributed resource management has been evaluated through a series of experiments. The results of these experiments show that the switching model can bring promising outcomes in collaborating distributed resources in an economic Grid

    Non-linear models for the prediction of specified design strengths of concretes development profile

    Get PDF
    AbstractDifferent concrete structures are designed according to their concrete strength requirements. Consequently, concrete strength is one of the prime properties of concrete structures. In this study, compressive strength behavioral pattern of seven design strength concretes 21MPa, 24MPa, 28MPa, 31MPa, 35MPa, 38MPa and 42MPa at curing ages of 3, 7, 14, 21, 28, 56, 90 and 180days was examined. In order to evaluate the long term effects on compressive strength of target design concretes, 360 cylindrical samples were cast. On the basis of the existing experimental tested strength data, a polynomial equation based model having 2 degrees with fractional power of 0.5 degree interval of each term was found to have acceptable correlation for describing the compressive strength gaining profile with the tested concrete ages. Correlation of proposed model was justified against the statistical point of view for examining the best fit profile with the observations. Apart from the correlation approach, the accuracy of the proposed model was validated with corresponding experimental observations of target design concretes followed by the model parameters estimation with 95% confidence interval. From the predicted results, the study revealed that proposed polynomial equation based model possessed strong potential for predicting 3, 7, 14, 21, 28, 56, 90 and 180days compressive strength of design concretes with high accuracy and trivial error rates
    corecore