104 research outputs found

    Early development of Calanus hyperboreus nauplii: Response to a changing ocean

    Get PDF
    To forecast effects of temperature changes on recruitment and population dynamics of the Arctic copepod Calanus hyperboreus, laboratory experiments investigating temperature and food effects on early development were performed in Disko Bay, western Greenland, in 2009, and ascent rates of C. hyperboreus eggs collected in east Greenland were measured in the laboratory. Ascent rates were highly variable both between and within clutches, ranging from 0.7 to 27.7 m d−1, suggesting variability in the biochemical composition of the egg. Development of eggs were investigated between 0.8°C and 6.6°C, and hatching was fitted to a Belěhrádek temperature function (r2 > 0.99) with mean development time (MDT) of eggs ranging from 2.8 to 5.8 d. MDT of fed and starved nauplii was calculated for nauplii raised at 5°C. Fed nauplii developed through the first five nauplius stages (N1–N5) during 40 d of incubation, whereas development of starved nauplii ceased at N3. Nauplii were able to survive at least 30 d of starvation. Respiration rate was measured for N1 and N3 at 0°C, 5°C, and 10°C, and it increased with development stage and temperature from 0.05 ± 0.01 to 0.29 ± 0.08 nmol O2 nauplii−1 h−1 for N1 at 0°C and N3 at 10°C, respectively. A decrease in carbon and lipid content from egg to N3 indicates that nauplii are using stored lipids to cover their metabolic costs during the nonfeeding stages. Early stages of C. hyperboreus seem more affected by temperature than later stages, a vulnerability that might affect future recruitment

    Gut evacuation rate and grazing impact of the krill Thysanoessa raschii and T. inermis

    Get PDF
    Gut evacuation rates and ingestion rates were measured for the krill Thysanoessa raschii and T. inermis in Godthåbsfjord, SW Greenland. Combined with biomass of the krill community, the grazing potential on phytoplankton along the fjord was estimated. Gut evacuation rates were 3.9 and 2.3 h−1 for T. raschii and T. inermis, respectively. Ingestion rates were 12.2 ± 7.5 µg C mg C−1 day−1 (n = 4) for T. inermis and 4.9 ± 3.2 µg C mg C−1 day−1 (n = 4) for T. raschii, corresponding to daily rations of 1.2 and 0.5 % body carbon day−1. Clearance experiments conducted in parallel to the gut evacuation experiment gave similar results for ingestion rates and daily rations. Krill biomass was highest in the central part of the fjord’s length, with T. raschii dominating. Community grazing rates from krill and copepods were comparable; however, their combined impact was low, estimated as <1 % of phytoplankton standing stock being removed per day during this late spring study

    <em>Enterococcus faecalis</em> Infection Causes Inflammation, Intracellular Oxphos-Independent ROS Production, and DNA Damage in Human Gastric Cancer Cells

    Get PDF
    Background: Achlorhydria caused by e.g. atrophic gastritis allows for bacterial overgrowth, which induces chronic inflammation and damage to the mucosal cells of infected individuals driving gastric malignancies and cancer. Enterococcus faecalis (E. faecalis) can colonize achlohydric stomachs and we therefore wanted to study the impact of E. faecalis infection on inflammatory response, reactive oxygen species (ROS) formation, mitochondrial respiration, and mitochondrial genetic stability in gastric mucosal cells. Methods: To separate the changes induced by bacteria from those of the inflammatory cells we established an in vitro E. faecalis infection model system using the gastric carcinoma cell line MKN74. Total ROS and superoxide was measured by fluorescence microscopy. Cellular oxygen consumption was characterized non-invasively using XF24 microplate based respirometry. Gene expression was examined by microarray, and response pathways were identified by Gene Set Analysis (GSA). Selected gene transcripts were verified by quantitative real-time polymerase chain reaction (qRT-PCR). Mitochondrial mutations were determined by sequencing. Results: Infection of MKN74 cells with E. faecalis induced intracellular ROS production through a pathway independent of oxidative phosphorylation (oxphos). Furthermore, E. faecalis infection induced mitochondrial DNA instability. Following infection, genes coding for inflammatory response proteins were transcriptionally up-regulated while DNA damage repair and cell cycle control genes were down-regulated. Cell growth slowed down when infected with viable E. faecalis and responded in a dose dependent manner to E. faecalis lysate. Conclusions: Infection by E. faecalis induced an oxphos-independent intracellular ROS response and damaged the mitochondrial genome in gastric cell culture. Finally the bacteria induced an NF-kappa B inflammatory response as well as impaired DNA damage response and cell cycle control gene expression

    Sensitivity of Calanus spp. copepods to environmental changes in the North Sea using life-stage structured models

    Get PDF
    The copepods Calanus finmarchicus and C. helgolandicus co-exist in the North Sea, but their spatial distribution and phenology are very different. Long-term changes in their distributions seem to occur due to climate change resulting in a northward extension of C. helgolandicus and a decline of C. finmarchicus in this region. The aim of this study is to use life-stage structured models of the two Calanus species embedded in a 3D coupled hydrodynamic-biogeochemical model to investigate how the biogeography of C. finmarchicus and C. helgolandicus is modified by changes in ± 2°C sea water temperatures, overwintering and oceanic inflow in the North Sea. Life-stage structured models are validated against CPR data and vertical distributions north of the Dogger Bank in the North Sea for the reference year 2005. The model shows that 1) ± 2°C changes from the current level mainly influence the seasonal patterns and not the relative occurrence of the two species, 2) changes due to oceanic inflow mainly appeared in the northern and southern part of the North Sea connected to the NE Atlantic and not in the central part and 3) the abundance of Calanus species were very sensitive to the degree of overwintering within the North Sea because it allows them to utilize the spring bloom more efficiently and independently of the timing and amount of oceanic inflow. The combination of lower temperatures, higher overwintering and oceanic inflow simulating the situation in the 1960s largely favoured C. finmarchicus and their relative contribution to Calanus spp. increased from 40% in the reference year to 72%. The +2°C scenario suggest that in a warmer future, C. finmarchicus is likely to decline and C. helgolandicus abundance will probably continue to increase in some area
    corecore