21 research outputs found

    Non ictal onset zone: A window to ictal dynamics

    Get PDF
    The focal and network concepts of epilepsy present different aspects of electroclinical phenomenon of seizures. Here, we present a 23-year-old man undergoing surgical evaluation with left fronto-temporal electrocorticography (ECoG) and microelectrode-array (MEA) in the middle temporal gyrus (MTG). We compare action-potential (AP) and local field potentials (LFP) recorded from MEA with ECoG. Seizure onset in the mesial-temporal lobe was characterized by changes in the pattern of AP-firing without clear changes in LFP or ECoG in MTG. This suggests simultaneous analysis of neuronal activity in differing spatial scales and frequency ranges provide complementary insights into how focal and network neurophysiological activity contribute to ictal activity

    Behavior Classification Using Multi-site LFP and ECoG Signals

    Get PDF
    Abstract-Deep Brain Stimulation (DBS) is an effective therapy that alleviates the motor signs of Parkinson’s disease (PD). Existing DBS is open loop, providing a time invariant stimulation pulse train that may generate cognitive, speech, and balance side effects. A closed-loop DBS system that utilizes appropriate physiological control variables may improve therapeutic results, reduce stimulation side effects, and extend battery life of pulse generators. Furthermore, by customizing DBS to a patient’s behavioral goal, side effects of stimulation may arise only when they are non-detrimental to the patient’s current goals. Therefore, classification of human behavior using physiological signals is an important step in the design of the next generation of closed-loop DBS systems. Ten subjects who were undergoing DBS implantation were recruited for the study. DBS leads were used to record bilateral STN-LFP activity and an electrocorticography (ECoG) strip was used to record field potentials over left prefrontal cortex. Subjects were cued to perform voluntary behaviors including left and right hand movement, left and right arm movement, mouth movement, and speech. Two types of algorithms were used to classify the subjects’ behavior, support vector machine (SVM) using linear, polynomial, and RBF kernels as well as lp-norm multiple kernel learning (MKL). Behavioral classification was performed using only LFP channels, only ECoG channels, and both LFP and ECoG channels. Features were extracted from the time-frequency representation of the signals. Phase locking values (PLV) between ECoG and LFP channels were calculated to determine connectivity between sites and aid in feature selection. Classification performance improved when multi-site signals were used with either SVM or MKL algorithms. Our experiments further show that the lp-norm MKL outperforms single kernel SVM-based classifiers in classifying behavioral tasks. References [1] H. M. Golshan, A. O. Hebb, S. J. Hanrahan, J. Nedrud, and M. H. Mahoor, “A multiple kernel learning approach for human behavioral task classification using STN-LFP signal,” EMBC, 38th IEEE International Conference on., pp.1030-1033, 2016. [2] H. M. Golshan, A. O. Hebb, S. J. Hanrahan, J. Nedrud, and M. H. Mahoor, “An FFT-based synchronization approach to recognize human behaviors using STN-LFP signal,” To appear in ICASSP, 42nd IEEE International Conference on., 2017

    Human Behavior Recognition Ssing Brain LFP Signal in the Presence of the Stimulation Pulse

    Get PDF
    Design and Methodology This study concentrates on human behavior classification task using local field potential (LFP) signals recorded from three subjects with Parkinson’s disease (PD). Existing approaches mainly employ the LFP signals acquired under the stimulation/off condition. In practical situations, however, it is necessary to design a classification method capable of recognizing different human activities under the stimulation/on condition, where the classification task is more complicated due to the artifacts imposed by the high amplitude stimulation pulse (~1-3volts). We utilize the time-frequency representation of the acquired LFPs in the Beta frequency range (~10-30Hz) to develop a feature space based on which the classification is efficiently performed while the high frequency stimulation pulse (~130-180Hz) has no/limited impact on the classification performance. Original Data and Results All three participants had undergone DBS surgery with implanted DBS leads (Medtronic 3389, Minneapolis, MN, USA) in the subthalamic nucleus of the brain. The recording sessions required the participants to do several repetitions of designed “button press” and “reach” trials under the condition of stimulation on/off. On average, 60 recordings were performed for each trial. Our analysis on the power spectral density (PSD) of the data showed that the stimulation pulse mostly impacts the frequency components around the stimulation frequency (~140Hz). Using a linear-kernel SVM classifier for classifying the aforementioned trials based on the proposed feature space, we obtained a classification accuracy of ~88% and ~87% respectively for stimulation off and on cases. Conclusion PD incidence increases with advancing age and peaks among people in their 60s and 70s. The cost of PD in the United States is estimated to be $25 billion per year. Thus, advanced techniques to improve the performance of existing devices are highly demanded. Human behavior classification from brain signals is essential in developing the next generation of closed-loop deep brain stimulation (DBS) systems. A closed-loop DBS system that utilizes appropriate physiological control variables may improve therapeutic results, reduce stimulation side effects, and extend battery life of pulse generators

    Non ictal onset zone: A window to ictal dynamics

    Get PDF
    The focal and network concepts of epilepsy present different aspects of electroclinical phenomenon of seizures. Here, we present a 23-year-old man undergoing surgical evaluation with left fronto-temporal electrocorticography (ECoG) and microelectrode-array (MEA) in the middle temporal gyrus (MTG). We compare action-potential (AP) and local field potentials (LFP) recorded from MEA with ECoG. Seizure onset in the mesial-temporal lobe was characterized by changes in the pattern of AP-firing without clear changes in LFP or ECoG in MTG. This suggests simultaneous analysis of neuronal activity in differing spatial scales and frequency ranges provide complementary insights into how focal and network neurophysiological activity contribute to ictal activity

    Non ictal onset zone: A window to ictal dynamics

    No full text
    The focal and network concepts of epilepsy present different aspects of electroclinical phenomenon of seizures. Here, we present a 23-year-old man undergoing surgical evaluation with left fronto-temporal electrocorticography (ECoG) and microelectrode-array (MEA) in the middle temporal gyrus (MTG). We compare action-potential (AP) and local field potentials (LFP) recorded from MEA with ECoG. Seizure onset in the mesial-temporal lobe was characterized by changes in the pattern of AP-firing without clear changes in LFP or ECoG in MTG. This suggests simultaneous analysis of neuronal activity in differing spatial scales and frequency ranges provide complementary insights into how focal and network neurophysiological activity contribute to ictal activity

    Motor Task Detection from Human STN Using Interhemispheric Connectivity

    No full text
    Deep brain stimulation (DBS) provides significant therapeutic benefit for movement disorders, such as Parkinson\u27s disease (PD). Current DBS devices lack real-time feedback (thus are open loop) and stimulation parameters are adjusted during scheduled visits with a clinician. A closed-loop DBS system may reduce power consumption and side effects by adjusting stimulation parameters based on patient\u27s behavior. Subthalamic nucleus (STN) local field potential (LFP) is a great candidate signal for the neural feedback, because it can be recorded from the stimulation lead and does not require additional sensors. In this paper, we introduce a behavior detection method capable of asynchronously detecting the finger movements of PD patients. Our study indicates that there is a motor-modulated inter-hemispheric connectivity between LFP signals recorded bilaterally from the STN. We utilize a non-linear regression method to measure this inter-hemispheric connectivity for detecting finger movement. Our experimental results, using the recordings from 11 patients with PD, demonstrate that this approach is applicable for behavior detection in the majority of subjects (average area under curve of 70±12%)

    Motor Task Detection From Human STN Using Interhemispheric Connectivity

    No full text
    Deep brain stimulation (DBS) provides significant therapeutic benefit for movement disorders, such as Parkinson\u27s disease (PD). Current DBS devices lack real-time feedback (thus are open loop) and stimulation parameters are adjusted during scheduled visits with a clinician. A closed-loop DBS system may reduce power consumption and side effects by adjusting stimulation parameters based on patient\u27s behavior. Subthalamic nucleus (STN) local field potential (LFP) is a great candidate signal for the neural feedback, because it can be recorded from the stimulation lead and does not require additional sensors. In this paper, we introduce a behavior detection method capable of asynchronously detecting the finger movements of PD patients. Our study indicates that there is a motor-modulated inter-hemispheric connectivity between LFP signals recorded bilaterally from the STN. We utilize a non-linear regression method to measure this inter-hemispheric connectivity for detecting finger movement. Our experimental results, using the recordings from 11 patients with PD, demonstrate that this approach is applicable for behavior detection in the majority of subjects (average area under curve of 70±12%)

    Decoding Hand Trajectories from Micro-Electrocorticography in Human Patients

    No full text
    A Kalman filter was used to decode hand trajectories from micro-electrocorticography recorded over motor cortex in human patients. In two cases, signals were recorded during stereotyped tasks, and the trajectories were decoded offline, with maximum correlation coefficients between actual and predicted trajectories of 0.51 (x-direction position) and 0.54 (y-direction position). In a third setting, a human patient with full neural control of a computer cursor acquired onscreen targets within 6.24 sec on average, with no algorithmic constraints on the output trajectory. These practical results illustrate the potential utility of signals recorded at the cortical surface with high spatial resolution, demonstrating that surface potentials contain relevant and sufficient information to drive sophisticated brain-computer interface systems

    Long-Term Task- and Dopamine-Dependent Dynamics of Subthalamic Local Field Potentials in Parkinson’s Disease

    No full text
    Subthalamic nucleus (STN) local field potentials (LFP) are neural signals that have been shown to reveal motor and language behavior, as well as pathological parkinsonian states. We use a research-grade implantable neurostimulator (INS) with data collection capabilities to record STN-LFP outside the operating room to determine the reliability of the signals over time and assess their dynamics with respect to behavior and dopaminergic medication. Seven subjects were implanted with the recording augmented deep brain stimulation (DBS) system, and bilateral STN-LFP recordings were collected in the clinic over twelve months. Subjects were cued to perform voluntary motor and language behaviors in on and off medication states. The STN-LFP recorded with the INS demonstrated behavior-modulated desynchronization of beta frequency (13–30 Hz) and synchronization of low gamma frequency (35–70 Hz) oscillations. Dopaminergic medication did not diminish the relative beta frequency oscillatory desynchronization with movement. However, movement-related gamma frequency oscillatory synchronization was only observed in the medication on state. We observed significant inter-subject variability, but observed consistent STN-LFP activity across recording systems and over a one-year period for each subject. These findings demonstrate that an INS system can provide robust STN-LFP recordings in ambulatory patients, allowing for these signals to be recorded in settings that better represent natural environments in which patients are in a variety of medication states
    corecore