2,725 research outputs found

    The risk of rabies spread in Japan: a mathematical modeling assessment

    Get PDF
    Rabies was eliminated from Japan in 1957. In the 60 years since elimination, vaccination coverage has declined and dog ownership habits have changed. The purpose of this study was to assess the current risk of rabies spread in Japan. A spatially explicit transmission model was developed at the 1 km2 grid scale for Hokkaido and Ibaraki Prefectures. Parameters associated with dog movement and bite injuries were estimated using historical records from Japan, and were used with previously published epidemiological parameters. The final epidemic size, efficacy of rabies contingency plans and the influence of dog owner responses to incursions were assessed by the model. Average outbreak sizes for dog rabies were 3.1 and 4.7 dogs in Hokkaido and Ibaraki Prefectures, respectively. Average number of bite injury cases were 4.4 and 6.7 persons in Hokkaido and Ibaraki Prefectures, respectively. Discontinuation of mandatory vaccination increased outbreak sizes in these prefectures. Sensitivity analyses showed that higher chance of unintentional release of rabid dogs by their owners (from 0.5 to 0.9 probability) increased outbreak size twofolds. Our model outputs suggested that at present, incursions of rabies into Japan are very unlikely to cause large outbreaks. Critically, the reaction of dog owners to their dogs developing rabies considerably impacts the course of outbreaks. Contingency measures should therefore include sensitisation of dog owners

    Transmission dynamics and prospects for the elimination of canine rabies

    Get PDF
    Rabies has been eliminated from domestic dog populations in Western Europe and North America, but continues to kill many thousands of people throughout Africa and Asia every year. A quantitative understanding of transmission dynamics in domestic dog populations provides critical information to assess whether global elimination of canine rabies is possible. We report extensive observations of individual rabid animals in Tanzania and generate a uniquely detailed analysis of transmission biology, which explains important epidemiological features, including the level of variation in epidemic trajectories. We found that the basic reproductive number for rabies, R<sub>0</sub>, is very low in our study area in rural Africa (∼1.2) and throughout its historic global range (<2). This finding provides strong support for the feasibility of controlling endemic canine rabies by vaccination, even near wildlife areas with large wild carnivore populations. However, we show that rapid turnover of domestic dog populations has been a major obstacle to successful control in developing countries, thus regular pulse vaccinations will be required to maintain population-level immunity between campaigns. Nonetheless our analyses suggest that with sustained, international commitment, global elimination of rabies from domestic dog populations, the most dangerous vector to humans, is a realistic goal

    Response to a rabies epidemic in Bali, Indonesia

    Get PDF
    Emergency vaccinations and culling failed to contain an outbreak of rabies in Bali, Indonesia, during 2008–2009. Subsequent island-wide mass vaccination (reaching 70% coverage, >200,000 dogs) led to substantial declines in rabies incidence and spread. However, the incidence of dog bites remains high, and repeat campaigns are necessary to eliminate rabies in Bali

    Integrating the landscape epidemiology and genetics of RNA viruses: rabies in domestic dogs as a model

    Get PDF
    Landscape epidemiology and landscape genetics combine advances in molecular techniques, spatial analyses and epidemiological models to generate a more real-world understanding of infectious disease dynamics and provide powerful new tools for the study of RNA viruses. Using dog rabies as a model we have identified how key questions regarding viral spread and persistence can be addressed using a combination of these techniques. In contrast to wildlife rabies, investigations into the landscape epidemiology of domestic dog rabies requires more detailed assessment of the role of humans in disease spread, including the incorporation of anthropogenic landscape features, human movements and socio-cultural factors into spatial models. In particular, identifying and quantifying the influence of anthropogenic features on pathogen spread and measuring the permeability of dispersal barriers are important considerations for planning control strategies, and may differ according to cultural, social and geographical variation across countries or continents. Challenges for dog rabies research include the development of metapopulation models and transmission networks using genetic information to uncover potential source/sink dynamics and identify the main routes of viral dissemination. Information generated from a landscape genetics approach will facilitate spatially strategic control programmes that accommodate for heterogeneities in the landscape and therefore utilise resources in the most cost-effective way. This can include the efficient placement of vaccine barriers, surveillance points and adaptive management for large-scale control programmes

    Costs analysis of a population level rabies control programme in Tamil Nadu, India

    Get PDF
    The study aimed to determine costs to the state government of implementing different interventions for controlling rabies among the entire human and animal populations of Tamil Nadu. This built upon an earlier assessment of Tamil Nadu’s efforts to control rabies. Anti-rabies vaccines were made available at all health facilities. Costs were estimated for five different combinations of animal and human interventions using an activity-based costing approach from the provider perspective. Disease and population data were sourced from the state surveillance data, human census and livestock census. Program costs were extrapolated from official documents. All capital costs were depreciated to estimate annualized costs. All costs were inflated to 2012 Rupees. Sensitivity analysis was conducted across all major cost centres to assess their relative impact on program costs. It was found that the annual costs of providing Anti-rabies vaccine alone and in combination with Immunoglobulins was \$0.7 million (Rs 36 million) and \$2.2 million (Rs 119 million), respectively. For animal sector interventions, the annualised costs of rolling out surgical sterilisation-immunization, injectable immunization and oral immunizations were estimated to be \$ 44 million (Rs 2,350 million), \$23 million (Rs 1,230 million) and \$ 11 million (Rs 590 million), respectively. Dog bite incidence, health systems coverage and cost of rabies biologicals were found to be important drivers of costs for human interventions. For the animal sector interventions, the size of dog catching team, dog population and vaccine costs were found to be driving the costs. Rabies control in Tamil Nadu seems a costly proposition the way it is currently structured. Policy makers in Tamil Nadu and other similar settings should consider the long-term financial sustainability before embarking upon a state or nation-wide rabies control programme

    Rabies elimination research: juxtaposing optimism, pragmatism and realism

    Get PDF
    More than 100 years of research has now been conducted into the prevention, control and elimination of rabies with safe and highly efficacious vaccines developed for use in human and animal populations. Domestic dogs are a major reservoir for rabies, and although considerable advances have been made towards the elimination and control of canine rabies in many parts of the world, the disease continues to kill tens of thousands of people every year in Africa and Asia. Policy efforts are now being directed towards a global target of zero human deaths from dog-mediated rabies by 2030 and the global elimination of canine rabies. Here we demonstrate how research provides a cause for optimism as to the feasibility of these goals through strategies based around mass dog vaccination. We summarize some of the pragmatic insights generated from rabies epidemiology and dog ecology research that can improve the design of dog vaccination strategies in low- and middle-income countries and which should encourage implementation without further delay. We also highlight the need for realism in reaching the feasible, although technically more difficult and longer-term goal of global elimination of canine rabies. Finally, we discuss how research on rabies has broader relevance to the control and elimination of a suite of diseases of current concern to human and animal health, providing an exemplar of the value of a ‘One Health’ approach

    Evaluation of cost-effective strategies for rabies post-exposure vaccination in low-income countries

    Get PDF
    <b>Background:</b> Prompt post-exposure prophylaxis (PEP) is essential in preventing the fatal onset of disease in persons exposed to rabies. Unfortunately, life-saving rabies vaccines and biologicals are often neither accessible nor affordable, particularly to the poorest sectors of society who are most at risk and upon whom the largest burden of rabies falls. Increasing accessibility, reducing costs and preventing delays in delivery of PEP should therefore be prioritized.<p></p> <b>Methodology/Principal Findings:</b> We analyzed different PEP vaccination regimens and evaluated their relative costs and benefits to bite victims and healthcare providers. We found PEP vaccination to be an extremely cost-effective intervention (from 200tolessthan200 to less than 60/death averted). Switching from intramuscular (IM) administration of PEP to equally efficacious intradermal (ID) regimens was shown to result in significant savings in the volume of vaccine required to treat the same number of patients, which could mitigate vaccine shortages, and would dramatically reduce the costs of implementing PEP. We present financing mechanisms that would make PEP more affordable and accessible, could help subsidize the cost for those most in need, and could even support new and existing rabies control and prevention programs.<p></p> <b>Conclusions/Significance:</b> We conclude that a universal switch to ID delivery would improve the affordability and accessibility of PEP for bite victims, leading to a likely reduction in human rabies deaths, as well as being economical for healthcare providers.<p></p&gt

    The demography of free-roaming dog populations and applications to disease and population control

    Get PDF
    Understanding the demography of domestic dog populations is essential for effective disease control, particularly of canine-mediated rabies. Demographic data are also needed to plan effective population management. However, no study has comprehensively evaluated the contribution of demographic processes (i.e. births, deaths and movement) to variations in dog population size or density, or determined the factors that regulate these processes, including human factors. We report the results of a 3-year cohort study of domestic dogs, which is the first to generate detailed data on the temporal variation of these demographic characteristics. The study was undertaken in two communities in each of Bali, Indonesia and Johannesburg, South Africa, in rabies-endemic areas and where the majority of dogs were free-roaming. None of the four communities had been engaged in any dog population management interventions by local authorities or animal welfare organizations. All identified dogs in the four communities were monitored individually throughout the study. We observed either no population growth or a progressive decline in population size during the study period. There was no clear evidence that population size was regulated through environmental resource constraints. Rather, almost all of the identified dogs were owned and fed regularly by their owners, consistent with population size regulated by human demand. Finally, a substantial fraction of the dogs originated from outside the population, entirely through the translocation of dogs by people, rather than from local births. These findings demonstrate that previously reported growth of dog populations is not a general phenomenon and challenge the widely held view that free-roaming dogs are unowned and form closed populations. Synthesis and applications. These observations have broad implications for disease and population control. The accessibility of dogs for vaccination and evaluation through owners and the movement of dogs (some of them infected) by people will determine the viable options for disease control strategies. The impact of human factors on population dynamics will also influence the feasibility of annual vaccination campaigns to control rabies and population control through culling or sterilization. The complex relationship between dogs and people is critically important in the transmission and control of canine-mediated rabies. For effective management, human factors must be considered in the development of disease and population control programmes

    Rabies and the pandemic: Lessons for One Health

    Get PDF
    This article examines the impact of coronavirus disease 2019 (COVID-19) on dog-mediated rabies, a neglected tropical disease that remains endemic in >65 countries. A globally agreed strategy for rabies elimination is underpinned by a One Health approach, coordinating human and animal health sectors and engaging communities. We present data on the scale and nature of COVID-19 disruption to rabies control programmes and the wider learning for One Health implementation. We argue that the global shift in health priorities caused by the pandemic, and consequent side-lining of animal health, will have broader ramifications for One Health implementation and preparedness for future emergent zoonoses

    Longitudinal monitoring reveals persistence of Colistin-Resistant Escherichia coli on a pig farm following cessation of colistin use

    Get PDF
    Colistin-resistant bacteria harboring plasmid-mediated mcr genes are of concern as they may be a cause of serious nosocomial infections. It is hypothesized that cessation of colistin use as a feed additive for pigs will reduce the occurrence and distribution of mcr genes in farms. The aim of this study was to investigate this hypothesis by longitudinal monitoring and characterizing of mcr positive Escherichia coli (MCRPE) isolates after colistin was withdrawn on a central Thailand pig farm that previously had a high frequency of MCRPE. Colistin use ceased at the beginning of 2017, and subsequently 170 samples were collected from farrowing sows and suckling piglets (n = 70), wastewater (n = 50) and farm workers (n = 50) over a 3.5-year period. Bacteria were identified by MALDI-TOF mass spectrometry and minimal inhibitory concentrations were determined by broth microdilution. The antibiogram of mcr positive E. coli isolates was determined using the Vitek2 automated susceptibility machine, and multiplex and simplex PCRs were performed for mcr-1–8 genes. MCRPE containing either mcr-1 or mcr-3 were isolated from pigs throughout the investigation period, but with a declining trend, whereas MCRPE isolates were recovered from humans only in 2017. MCRPE were still being recovered from wastewater in 2020. Most MCRPE isolates possessed the virulence genes Stap, Stb, or Stx2e, reflecting pathogenic potential in pigs, and showed high rates of resistance to ampicillin, gentamicin and tetracycline. Pulsed-field gel electrophoresis and multi-locus sequence typing showed that diverse MCRPE clones were distributed on the farm. The study identified a decline of pathogenic MCRPE following withdrawal of colistin, with pigs being the primary source, followed by wastewater. However, short-term therapeutic usage of other antibiotics could enhance the re-occurrence of mcr-carrying bacteria. Factors including the environment, management, and gene adaptations that allow maintenance of colistin resistance require further investigation, and longer-term studies are needed
    corecore