3,455 research outputs found

    Automated knowledge capture in 2D and 3D design environments

    Get PDF
    In Life Cycle Engineering, it is vital that the engineering knowledge for the product is captured throughout its life cycle in a formal and structured manner. This will allow the information to be referred to in the future by engineers who did not work on the original design but are wanting to understand the reasons that certain design decisions were made. In the past, attempts were made to try to capture this knowledge by having the engineer record the knowledge manually during a design session. However, this is not only time-consuming but is also disruptive to the creative process. Therefore, the research presented in this paper is concerned with capturing design knowledge automatically using a traditional 2D design environment and also an immersive 3D design environment. The design knowledge is captured by continuously and non-intrusively logging the user during a design session and then storing this output in a structured eXtensible Markup Language (XML) format. Next, the XML data is analysed and the design processes that are involved can be visualised by the automatic generation of IDEF0 diagrams. Using this captured knowledge, it forms the basis of an interactive online assistance system to aid future users who are carrying out a similar design task

    Effectiveness evaluation of STOL transport operations

    Get PDF
    A short-takeoff and landing (STOL) systems simulation model has been developed and implemented in a computer code (known as STOL OPS) which permits evaluation of the operation of a STOL aircraft and its avionics in a commercial airline operating environment. STOL OPS concentrated on the avionics functions of navigation, guidance, control, communication, hazard aviodance, and systems management. External world factors influencing the operation of the STOL aircraft include each airport and its geometry, air traffic at each airport, air traffic control equipment and procedures, weather (including winds and visibility), and the flight path between each airport served by the route. The development of the STOL OPS program provides NASA a set of computer programs which can be used for detailed analysis of a STOL aircraft and its avionics and permit establishment of system requirements as a function of airline mission performance goals

    The Prelude to and Aftermath of the Giant Flare of 2004 December 27: Persistent and Pulsed X-ray Properties of SGR 1806-20 from 1993 to 2005

    Get PDF
    On 2004 December 27, a highly-energetic giant flare was recorded from the magnetar candidate SGR 1806-20. In the months preceding this flare, the persistent X-ray emission from this object began to undergo significant changes. Here, we report on the evolution of key spectral and temporal parameters prior to and following this giant flare. Using the Rossi X-ray Timing Explorer, we track the pulse frequency of SGR 1806-20 and find that the spin-down rate of this SGR varied erratically in the months before and after the flare. Contrary to the giant flare in SGR 1900+14, we find no evidence for a discrete jump in spin frequency at the time of the December 27th flare (|dnu/nu| < 5 X 10^-6). In the months surrounding the flare, we find a strong correlation between pulsed flux and torque consistent with the model for magnetar magnetosphere electrodynamics proposed by Thompson, Lyutikov & Kulkarni (2002). As with the flare in SGR 1900+14, the pulse morphology of SGR 1806-20 changes drastically following the flare. Using the Chandra X-ray Observatory and other publicly available imaging X-ray detector observations, we construct a spectral history of SGR 1806-20 from 1993 to 2005. The usual magnetar persistent emission spectral model of a power-law plus a blackbody provides an excellent fit to the data. We confirm the earlier finding by Mereghetti et al. (2005) of increasing spectral hardness of SGR 1806-20 between 1993 and 2004. Contrary to the direct correlation between torque and spectral hardness proposed by Mereghetti et al., we find evidence for a sudden torque change that triggered a gradual hardening of the energy spectrum on a timescale of years. Interestingly, the spectral hardness, spin-down rate, pulsed, and phase-averaged of SGR 1806-20 all peak months before the flare epoch.Comment: 37 pages, 8 figures, 8 tables. Accepted for publication in ApJ. To appear in the Oct 20 2006 editio

    Control of Johnsongrass.

    Get PDF
    6 p

    Site 1220

    No full text
    Site 1220 (10°10.600´N, 142°45.503´W; 5218 meters below sea level (mbsl); Fig. F1) forms a southerly component of the 56-Ma transect drilled during Leg 199. It is situated about midway between the Clipperton and Clarion Fracture Zones in typical abyssal hill topography. On the basis of regional magnetic anomalies, we anticipated basement age at Site 1220 to be equivalent to Chron C25n (~56 Ma; Cande et al., 1989), slightly older than at Site 1219. At the outset of drilling at Site 1220, our estimate for total sediment depth was ~225 meters below seafloor (mbsf) (Fig. F2). Based upon a fixed hotspot model (Gripp and Gordon, 1990, for 0- to 5-Ma Pacific hotspot rotation pole; Engebretson et al., 1985, for older poles), Site 1220 should have been located ~3° south of the equator at 56 Ma and in an equatorial position at 40 Ma. Thus, Site 1220 should have been situated underneath the South Equatorial Current in the early Eocene. A nearby piston core (EW9709-13PC) taken during the site survey cruise recovered &gt;16 m of red clay, with the base of the core dated as middle-early Miocene on the basis of radiolarian biostratigraphy (Lyle, 2000). Site 1220 will be used to study equatorial ocean circulation from the late Paleocene through the late Eocene during the early Cenozoic thermal maximum. Sediment records from this site will help to define the calcite compensation depth (CCD) and lysocline during the Paleocene-Eocene and Eocene-Oligocene transitions. In this and other respects, Site 1220 will act as an interesting analog to Site 1218. Both sites are thought to have been located on the equator at ~40 Ma, but the older crustal age anticipated at Site 1220 dictates a greater paleowater depth than for contemporaneous sediments accumulating at Site 1218

    Discovery of Pulsations and a Possible Spectral Feature in the X-ray Emission from Rotating Radio Transient J1819-1458

    Get PDF
    PSR J1819-1458 is a rotating radio transient (RRAT) source with an inferred surface dipole magnetic field strength of 5e13 G and a 4.26-s spin period. We present XMM-Newton observations of the X-ray counterpart of this source, CXOU J181939.1-145804, in which we identify pulsations and a possible spectral feature. The X-ray pulsations are at the period predicted by the radio ephemeris, providing an unambiguous identification with the radio source and confirmation of its neutron star nature. The X-ray pulse has a 0.3-5 keV pulsed fraction of 34% and is aligned with the expected phase of the radio pulse. The X-ray spectrum is fit well by an absorbed blackbody with kT = 0.14 keV with the addition of an absorption feature at 1 keV, with total absorbed flux of 1.5e-13 ergs/cm^2/s (0.3-5 keV). This absorption feature is well modeled by a Gaussian or resonant cyclotron scattering model, but its significance is dependent on the choice of continuum model. We find no evidence for any X-ray bursts or aperiodic variability on timescales of 6 ms to the duration of the observation and can place the most stringent limit to date of < 3e-9 ergs/cm^2/s on the absorbed 0.3-5 keV flux of any bursts.Comment: 5 figures, accepted by Ap

    Site 1216

    No full text
    Site 1216 (21°27.16´N, 139°28.79´W; 5152 meters below sea level [mbsl]; Fig. F1) is situated in abyssal hill topography south of the Molokai Fracture Zone and two small associated unnamed parasitic fracture zones (Fig. F2). Based on magnetic lineations, Site 1216 appears to be situated on normal ocean crust formed during the C25r magnetic anomaly (~57 Ma; Atwater and Severinghaus, 1989). Site 1216 was chosen for drilling because it is near the thickest section of lower Eocene sediments along the 56-Ma transect, which was based upon the seismic stratigraphy of seismic reflection data acquired on site survey cruise EW9709 during transits between the proposed drill sites (Lyle et al., this volume; Moore et al., 2002). The Cenozoic history of sedimentation in this region was poorly constrained prior to Leg 199, being largely based on two Deep Sea Drilling Project (DSDP) drill sites (40 and 41) and piston core data (EW9709-3PC) from ~1.5° in latitude to the south. Based on data from these drill sites, we expected the sedimentary sequence at Site 1216 to comprise red clays (a mixture of wind-blown dust and authigenic precipitates) overlying a biogenic sediment section composed of an upper middle Eocene radiolarian ooze and lower carbonate ooze deposited when the site was near the ridge crest in the late Paleocene and early Eocene. The broad paleoceanographic objectives of drilling the sedimentary sequence anticipated at Site 1216 are as follows: (1) to help define the shift in the Intertropical Convergence Zone through the Paleogene by following the change in eolian-dust composition and flux through time (red clays) and (2) to help define the latitudinal extent, composition, and mass accumulation of plankton communities in the north equatorial Pacific region thereby constraining ocean circulation patterns and the extent of the equatorial high-productivity belt in the Eocene ocean. Results from Site 1216 will also provide important information to test whether there was significant motion of the Hawaiian hotspot with respect to the Earth's spin axis during the early Cenozoic. At 56 Ma, the backtracked location of Site 1216 based upon a hotspot reference frame (Gripp and Gordon, 1990, for 0- to 5-Ma Pacific hotspot rotation pole; Engebretson et al., 1985, for older poles) is about 9°N, 108°W. If significant hotspot motion or true polar wander occurred since 57 Ma (Petronotis et al., 1994), this drill site could have been much nearer to the equator

    Site 1222

    No full text
    Site 1222 (13°48.98´N, 143°53.35´W; 4989 meters below sea level [mbsl]; Fig. F1) forms a south-central component of the 56-Ma transect drilled during Leg 199 and is situated ~2° south of the Clarion Fracture Zone in typical abyssal hill topography. On the basis of regional magnetic anomalies, we anticipated basement age at Site 1222 to be equivalent to Chron C25r or Chron C25n (~56-57 Ma) (Cande et al., 1989), which is slightly older than at Site 1219. At the outset of drilling at Site 1222, our estimate for total sediment thickness was ~115 m (Fig. F2). Based upon a fixed hotspot model (Gripp and Gordon, 1990, for 0- to 5-Ma Pacific hotspot rotation pole; Engebretson et al., 1985, for older poles) Site 1222 should have been located ~1° north of the equator at 56 Ma and ~4°N at 40 Ma. A nearby gravity core (EW9709-17GC), taken during the site survey cruise, recovered &gt;5 m of red clay with a late-middle Miocene age on the basis of radiolarian biostratigraphy (Lyle, 2000). Deep Sea Drilling Project (DSDP) Site 42 located ~4° east of Site 1222, was not drilled to basement but contains a thin sedimentary section (~100 m thick) of upper Oligocene nannofossil ooze through middle Eocene radiolarian nannofossil ooze. In turn, DSDP Site 162 lies ~1° north of DSDP Site 42 and is situated on young crust (49 Ma) that contains ~150 m of clayey radiolarian and nannofossil oozes of early Oligocene-middle Eocene age. Site 1222 will be used to study the position of the Intertropical Convergence Zone in the late Eocene and Oligocene, to sample late Paleocene and early Eocene sediments in the central tropical Pacific Ocean, and to help determine whether or not there has been significant southward movement of the hotspots with respect to the spin axis prior to 40 Ma

    Site 1217

    No full text
    Site 1217 (16°52.02´N, 138°06.00´W; 5342 meters below sea level [mbsl]; Fig. F1) is one of seven sites drilled to target upper Paleocene crust along a latitudinal transect during Leg 199 and will be used to investigate paleoceanographic processes in the northern tropical early Eocene Pacific Ocean. Site 1217 is situated ~1° north of the Clarion Fracture Zone on abyssal hill topography typical of the central Pacific. Based on magnetic lineations, basement age at Site 1217 should be in magnetic Anomaly C25r or ~57 Ma (Cande et al., 1989; timescale of Cande and Kent, 1995). The Cenozoic history of sedimentation in this region was poorly constrained prior to Leg 199 drilling because the nearest drill site (Deep Sea Drilling Project [DSDP] Site 162) is situated ~300 km south and west on 48-Ma crust. Based on data from this early rotary-cored hole, magnetic anomaly maps, a shallow-penetration piston core near Site 1217 (EW9709-4PC), and seismic profiling (Fig. F2), we expected the sedimentary sequence at Site 1217 to comprise a relatively thick (25 to 35 m thick) section of red clays overlying a radiolarian ooze and a basal carbonate section with possible chert near basement (estimated total depth ~125-150 meters below seafloor [mbsf]) deposited when the site was near the ridge crest in the late Paleocene and early Eocene. Site 1217 was chosen because it is anticipated to have been located just outside of the equatorial region at 56 Ma, ~5°N, 106°W based upon a fixed hotspot model (Gripp and Gordon, 1990, for 0- to 5-Ma Pacific hotspot rotation pole; Engebretson et al., 1985, for older poles). On the same basis at 40 Ma, the site was located at ~8°N, 111°W. Thus, Site 1217 should help define the paleoceanography of the northern tropical Pacific, in particular locating the ancient North Equatorial Countercurrent (NECC) region. General circulation-model experiments for the early Eocene (see Huber, this volume) suggest that the NECC was a well-developed current during this time period. Other paleoceanographic and paleoclimatic objectives of drilling the sedimentary sequence anticipated at Site 1217 are as follows: (1) to help define the shift in the Intertropical Convergence Zone through the Paleogene by following the change in eolian dust composition and flux through time (red clays); (2) to help constrain the middle-late Eocene calcite compensation depth (CCD); and (3) to sample the Paleocene/Eocene (P/E) boundary, one of the most climatologically critical intervals of Cenozoic time. Recovery of deep-sea sediments from this time interval during Leg 199 is a high priority because the P/E boundary has never before been sampled in the central tropical Pacific Ocean. Results from Site 1217 will also provide important information to test whether there was significant motion of the Hawaiian hotspot, with respect to the Earth's spin axis during the early Cenozoic. At 56 Ma, the backtracked location based upon a hotspot reference frame is ~5°N, 106°W, and at 40 Ma is ~8°N, 106°W. If significant hotspot motion or true polar wander occurred since 57 Ma (Petronotis et al., 1994), this drill site could have been much nearer to the equator
    corecore