445 research outputs found
Numerical investigation of different tip shapes for wind turbine blades. Aerodynamic and aeroacoustic aspects
Treatment of acute migraine by a partial rebreathing device : A randomized controlled pilot study
Background Impaired brain oxygen delivery can trigger and exacerbate migraine attacks. Normoxic hypercapnia increases brain oxygen delivery markedly by vasodilation of the cerebral vasculature, and hypercapnia has been shown to abort migraine attacks. Stable normoxic hypercapnia can be induced by a compact partial rebreathing device. This pilot study aimed to provide initial data on the device's efficacy and safety. Methods Using a double-blinded, randomized, cross-over study design, adult migraine-with-aura patients self-administered the partial rebreathing device or a sham device for 20 minutes at the onset of aura symptoms. Results Eleven participants (mean age 35.5, three men) self-treated 41 migraine attacks (20 with the partial rebreathing device, 21 with sham). The partial rebreathing device increased mean End Tidal CO2 by 24%, while retaining mean oxygen saturation above 97%. The primary end point (headache intensity difference between first aura symptoms and two hours after treatment (0-3 scale) - active/sham difference) did not reach statistical significance (-0.55 (95% CI: -1.13-0.04), p=0.096), whereas the difference in percentage of attacks with pain relief at two hours was significant (p=0.043), as was user satisfaction (p=0.022). A marked efficacy increase was seen from first to second time use of the partial rebreathing device. No adverse events occurred, and side effects were absent or mild. Conclusion Normoxic hypercapnia shows promise as an adjunctive/alternative migraine treatment, meriting further investigation in a larger population. Clinical study registered at ClinicalTrials.gov with identifier NCT03472417Peer reviewe
Erratum to : Analysis of the mitochondrial maxicircle of Trypanosoma lewisi, a neglected human pathogen
BACKGROUND
The haemoflagellate Trypanosoma lewisi is a kinetoplastid parasite which, as it has been recently reported to cause human disease, deserves increased attention. Characteristic features of all kinetoplastid flagellates are a uniquely structured mitochondrial DNA or kinetoplast, comprised of a network of catenated DNA circles, and RNA editing of mitochondrial transcripts. The aim of this study was to describe the kinetoplast DNA of T. lewisi.
METHODS/RESULTS
In this study, purified kinetoplast DNA from T. lewisi was sequenced using high-throughput sequencing in combination with sequencing of PCR amplicons. This allowed the assembly of the T. lewisi kinetoplast maxicircle DNA, which is a homologue of the mitochondrial genome in other eukaryotes. The assembly of 23,745 bp comprises the non-coding and coding regions. Comparative analysis of the maxicircle sequence of T. lewisi with Trypanosoma cruzi, Trypanosoma rangeli, Trypanosoma brucei and Leishmania tarentolae revealed that it shares 78 %, 77 %, 74 % and 66 % sequence identity with these parasites, respectively. The high GC content in at least 9 maxicircle genes of T. lewisi (ATPase6; NADH dehydrogenase subunits ND3, ND7, ND8 and ND9; G-rich regions GR3 and GR4; cytochrome oxidase subunit COIII and ribosomal protein RPS12) implies that their products may be extensively edited. A detailed analysis of the non-coding region revealed that it contains numerous repeat motifs and palindromes.
CONCLUSIONS
We have sequenced and comprehensively annotated the kinetoplast maxicircle of T. lewisi. Our analysis reveals that T. lewisi is closely related to T. cruzi and T. brucei, and may share similar RNA editing patterns with them rather than with L. tarentolae. These findings provide novel insight into the biological features of this emerging human pathogen
A randomized, double-blinded, placebo-controlled, parallel trial of vitamin D<sub>3</sub> supplementation in adult patients with migraine
Comparison of figure-of-8 and circular coils for threshold tracking transcranial magnetic stimulation measurements
OBJECTIVES: The transcranial magnetic stimulation (TMS) technique of threshold-tracking short-interval intracortical inhibition (T-SICI) has been proposed as a diagnostic tool for amyotrophic lateral sclerosis (ALS). Most of these studies have used a circular coil, whereas a figure-of-8 coil is usually recommended for paired-pulse TMS measurements. The aim of this study was to compare figure-of-8 and circular coils for T-SICI in the upper limb, with special attention to reproducibility, and the pain or discomfort experienced by the subjects. METHODS: Twenty healthy subjects (aged: 45.5 ± 6.7, mean ± SD, 9 females, 11 males) underwent two examinations with each coil, in morning and afternoon sessions on the same day, with T-SICI measured at interstimulus intervals (ISIs) from 1-7 ms. After each examination the subjects rated degree of pain/discomfort from 0 to 10 using a numerical rating scale (NRS). RESULTS: Mean T-SICI was higher for the figure-of-8 than for the circular coil at ISI of 2 ms (p < 0.05) but did not differ at other ISIs. Intra-subject variability did not differ between coils, but mean inhibition from 1-3.5 ms was less variable between subjects with the figure-of-8 coil (SD 7.2% vs. 11.2% RMT, p < 0.05), and no such recordings were without inhibition (vs. 6 with the circular coil). The subjects experienced less pain/discomfort with the figure-of-8 coil (mean NRS: 1.9 ± 1.28 vs 2.8 ± 1.60, p < 0.005). DISCUSSION: The figure-of-8 coil may have better applicability in patients, due to the lower incidence of lack of inhibition in healthy subjects, and the lower experience of pain or discomfort
Muscle velocity recovery cycles in myopathy.
OBJECTIVE
To understand the pathophysiology of myopathies by using muscle velocity recovery cycles (MVRC) and frequency ramp (RAMP) methodologies.
METHODS
42 patients with quantitative electromyography (qEMG) and biopsy or genetic verified myopathy and 42 healthy controls were examined with qEMG, MVRC and RAMP, all recorded from the anterior tibial muscle.
RESULTS
There were significant differences in the motor unit potential (MUP) duration, the early and late supernormalities of the MVRC and the RAMP latencies in myopathy patients compared to controls (p < 0.05 apart from muscle relatively refractory period (MRRP)). When dividing into subgroups, the above-mentioned changes in MVRC and RAMP parameters were increased for the patients with non-inflammatory myopathy, while there were no significant changes in the group of patients with inflammatory myopathy.
CONCLUSIONS
The MVRC and RAMP parameters can discriminate between healthy controls and myopathy patients, more significantly for non-inflammatory myopathy. MVRC differences with normal MRRP in myopathy differs from other conditions with membrane depolarisation.
SIGNIFICANCE
MVCR and RAMP may have a potential in understanding disease pathophysiology in myopathies. The pathogenesis in non-inflammatory myopathy does not seem to be caused by a depolarisation of the resting membrane potential but rather by the change in sodium channels of the muscle membrane
Two new Rett syndrome families and review of the literature: expanding the knowledge of MECP2 frameshift mutations
<p>Abstract</p> <p>Background</p> <p>Rett syndrome (RTT) is an X-linked dominant neurodevelopmental disorder, which is usually caused by <it>de novo </it>mutations in the <it>MECP2 </it>gene. More than 70% of the disease causing <it>MECP2 </it>mutations are eight recurrent C to T transitions, which almost exclusively arise on the paternally derived X chromosome. About 10% of the RTT cases have a C-terminal frameshift deletion in <it>MECP2</it>. Only few RTT families with a segregating <it>MECP2 </it>mutation, which affects female carriers with a phenotype of mental retardation or RTT, have been reported in the literature. In this study we describe two new RTT families with three and four individuals, respectively, and review the literature comparing the type of mutations and phenotypes observed in RTT families with those observed in sporadic cases. Based on these observations we also investigated origin of mutation segregation to further improve genetic counselling.</p> <p>Methods</p> <p><it>MECP2 </it>mutations were identified by direct sequencing. XCI studies were performed using the X-linked androgen receptor (<it>AR</it>) locus. The parental origin of <it>de novo MECP2 </it>frameshift mutations was investigated using intronic SNPs.</p> <p>Results</p> <p>In both families a C-terminal frameshift mutation segregates. Clinical features of the mutation carriers vary from classical RTT to mild mental retardation. XCI profiles of the female carriers correlate to their respective geno-/phenotypes. The majority of the <it>de novo </it>frameshift mutations occur on the paternally derived X chromosome (7/9 cases), without a paternal age effect.</p> <p>Conclusions</p> <p>The present study suggests a correlation between the intrafamilial phenotypic differences observed in RTT families and their respective XCI pattern in blood, in contrast to sporadic RTT cases where a similar correlation has not been demonstrated. Furthermore, we found <it>de novo MECP2 </it>frameshift mutations frequently to be of paternal origin, although not with the same high paternal occurrence as in sporadic cases with C to T transitions. This suggests further investigations of more families. This study emphasizes the need for thorough genetic counselling of families with a newly diagnosed RTT patient.</p
- …
