692 research outputs found
Alcohol representations are socially situated: an investigation of beverage representations by using a property generation task
Previous research suggests that people's representations of alcoholic beverages play an important role in drinking behavior. However, relatively little is known about the contents of these representations. Here, we introduce the property generation task as a tool to explore these representations in detail. In a laboratory study (N = 110), and a bar field-study (N = 56), participants listed typical properties of alcoholic beverages, sugary beverages, and water. Each of these properties was then categorized using a previously developed, hierarchical coding scheme. For example, the property “sweet” was categorized as referring to “taste”, which falls under “sensory experience”, which falls under “consumption situation”. Afterwards, participants completed measures of drinking behavior and alcohol craving. Results showed that alcoholic beverages were strongly represented in terms of consumption situations, with 57% and 69% of properties relating to consumption in the laboratory and the bar study, respectively. Specifically, alcoholic beverages were more strongly represented in terms of the social context of consumption (e.g., “with friends”) than the other beverages. In addition, alcoholic beverages were strongly represented in terms of sensory experiences (e.g. “sweet”) and positive outcomes (e.g. “creates fun”), as were the sugary beverages and water. In Study 1, the extent to which alcoholic beverages were represented in terms of social context was positively associated with craving and regularly consuming alcohol. The property generation task provides a useful tool to access people's idiosyncratic representations of alcoholic beverages. This may further our understanding of drinking behavior, and help to tailor research and interventions to reduce drinking of alcoholic and other high-calorie beverages
Universality of weakly bound dimers and Efimov trimers close to Li-Cs Feshbach resonances
We study the interspecies scattering properties of ultracold Li-Cs mixtures
in their two energetically lowest spin channels in the magnetic field range
between 800 G and 1000 G. Close to two broad Feshbach resonances we create
weakly bound LiCs dimers by radio-frequency association and measure the
dependence of the binding energy on the external magnetic field strength. Based
on the binding energies and complementary atom loss spectroscopy of three other
Li-Cs s-wave Feshbach resonances we construct precise molecular singlet and
triplet electronic ground state potentials using a coupled-channels
calculation. We extract the Li-Cs interspecies scattering length as a function
of the external field and obtain almost a ten-fold improvement in the precision
of the values for the pole positions and widths of the s-wave Li-Cs Feshbach
resonances as compared to our previous work [Pires \textit{et al.}, Phys. Rev.
Lett. \textbf{112}, 250404 (2014)]. We discuss implications on the Efimov
scenario and the universal geometric scaling for LiCsCs trimers
Conduction Channels of One-Atom Zinc Contacts
We have determined the transmission coefficients of atomic-sized Zn contacts
using a new type of breakjunction which contains a whisker as a central bridge.
We find that in the last conductance plateau the transport is unexpectedly
dominated by a well-transmitting single conduction channel. We explain the
experimental findings with the help of a tight-binding model which shows that
in an one-atom Zn contact the current proceeds through the 4s and 4p orbitals
of the central atom.Comment: revtex4, 5 pages, 5 figure
Electron-vibration interaction in transport through atomic gold wires
We calculate the effect of electron-vibration coupling on conduction through
atomic gold wires, which was measured in the experiments of Agra\"it et al.
[Phys. Rev. Lett. 88, 216803 (2002)]. The vibrational modes, the coupling
constants, and the inelastic transport are all calculated using a tight-binding
parametrization and the non-equilibrium Green function formalism. The
electron-vibration coupling gives rise to small drops in the conductance at
voltages corresponding to energies of some of the vibrational modes. We study
systematically how the position and height of these steps vary as a linear wire
is stretched and more atoms are added to it, and find a good agreement with the
experiments. We also consider two different types of geometries, which are
found to yield qualitatively similar results. In contrast to previous
calculations, we find that typically there are several close-lying drops due to
different longitudinal modes. In the experiments, only a single drop is usually
visible, but its width is too large to be accounted for by temperature.
Therefore, to explain the experimental results, we find it necessary to
introduce a finite broadening to the vibrational modes, which makes the
separate drops merge into a single, wide one. In addition, we predict how the
signatures of vibrational modes in the conductance curves differ between linear
and zigzag-type wires.Comment: 19 pages, 12 figure
Universal three-body recombination and Efimov resonances in an ultracold Li-Cs mixture
We study Efimov resonances via three-body loss in an ultracold two-component
gas of fermionic Li and bosonic Cs atoms close to a Feshbach
resonance at 843~G, extending results reported previously [Pires \textit{et
al.}, Phys. Rev. Lett. 112, 250404 (2014)] to temperatures around 120~nK. The
experimental scheme for reaching lower temperatures is based upon compensating
the gravity-induced spatial separation of the mass-imbalanced gases with
bichromatic optical dipole traps. We observe the first and second excited
Li-Cs-Cs Efimov resonance in the magnetic field dependence of the three-body
event rate constant, in good agreement with the universal zero-range theory at
finite temperature [Petrov and Werner, Phys. Rev. A 92, 022704 (2015)].
Deviations are found for the Efimov ground state, and the inelasticity
parameter is found to be significantly larger than those for
single-species systems
Local energy decay of massive Dirac fields in the 5D Myers-Perry metric
We consider massive Dirac fields evolving in the exterior region of a
5-dimensional Myers-Perry black hole and study their propagation properties.
Our main result states that the local energy of such fields decays in a weak
sense at late times. We obtain this result in two steps: first, using the
separability of the Dirac equation, we prove the absence of a pure point
spectrum for the corresponding Dirac operator; second, using a new form of the
equation adapted to the local rotations of the black hole, we show by a Mourre
theory argument that the spectrum is absolutely continuous. This leads directly
to our main result.Comment: 40 page
Metallic properties of magnesium point contacts
We present an experimental and theoretical study of the conductance and
stability of Mg atomic-sized contacts. Using Mechanically Controllable Break
Junctions (MCBJ), we have observed that the room temperature conductance
histograms exhibit a series of peaks, which suggests the existence of a shell
effect. Its periodicity, however, cannot be simply explained in terms of either
an atomic or electronic shell effect. We have also found that at room
temperature, contacts of the diameter of a single atom are absent. A possible
interpretation could be the occurrence of a metal-to-insulator transition as
the contact radius is reduced, in analogy with what it is known in the context
of Mg clusters. However, our first principle calculations show that while an
infinite linear chain can be insulating, Mg wires with larger atomic
coordinations, as in realistic atomic contacts, are alwaysmetallic. Finally, at
liquid helium temperature our measurements show that the conductance histogram
is dominated by a pronounced peak at the quantum of conductance. This is in
good agreement with our calculations based on a tight-binding model that
indicate that the conductance of a Mg one-atom contact is dominated by a single
fully open conduction channel.Comment: 14 pages, 5 figure
Технологии информационной власти в условиях глобализации
Представлен анализ эволюции дискурса по проблеме современной власти в направлении изменений технологий информационной власти в условиях глобализации. Исследуется проблема развития новых технологий формирующейся информационной власти в условиях глобализации
- …