816 research outputs found
Structural analysis and corrosion studies on an ISO 5832-9 biomedical alloy with TiO2 sol–gel layers
The aim of this study was to demonstrate the
relationship between the structural and corrosion properties
of an ISO 5832-9 biomedical alloy modified with titanium
dioxide (TiO2) layers. These layers were obtained via the
sol–gel method by acid-catalyzed hydrolysis of titanium
isopropoxide in isopropanol solution. To obtain TiO2 layers
with different structural properties, the coated samples
were annealed at temperatures of 200, 300, 400, 450, 500,
600 and 800 C for 2 h. For all the prepared samples,
accelerated corrosion measurements were performed in
Tyrode’s physiological solution using electrochemical
methods. The most important corrosion parameters were
determined: corrosion potential, polarization resistance,
corrosion rate, breakdown and repassivation potentials.
Corrosion damage was analyzed using scanning electron
microscopy. Structural analysis was carried out for selected
TiO2 coatings annealed at 200, 400, 600 and 800 C. In
addition, the morphology, chemical composition, crystallinity,
thickness and density of the deposited TiO2 layers
were determined using suitable electron and X-ray measurement
methods. It was shown that the structure and
character of interactions between substrate and deposited
TiO2 layers depended on annealing temperature. All the
obtained TiO2 coatings exhibit anticorrosion properties, but
these properties are related to the crystalline structure and
character of substrate–layer interaction. From the point of
view of corrosion, the best TiO2 sol–gel coatings for stainless steel intended for biomedical applications seem to
be those obtained at 400 C.This study was supported by Grant No. N N507
501339 of the National Science Centre. The authors wish to express
their thanks to J. Borowski (MEDGAL, Poland) for the Rex 734 alloy
Wall-thickness-dependent strength of nanotubular ZnO
We fabricate nanotubular ZnO with wall thickness of 45, 92, 123 nm using nanoporous gold (np-Au) with ligament diameter at necks of 1.43 mu m as sacrificial template. Through micro-tensile and micro-compressive testing of nanotubular ZnO structures, we find that the exponent m in (sigma) over bar proportional to (rho) over bar (m), where (sigma) over bar is the relative strength and (rho) over bar is the relative density, for tension is 1.09 and for compression is 0.63. Both exponents are lower than the value of 1.5 in the Gibson-Ashby model that describes the relation between relative strength and relative density where the strength of constituent material is independent of external size, which indicates that strength of constituent ZnO increases as wall thickness decreases. We find, based on hole-nanoindentation and glazing incidence X-ray diffraction, that this wall-thickness-dependent strength of nanotubular ZnO is not caused by strengthening of constituent ZnO by size reduction at the nanoscale. Finite element analysis suggests that the wall-thickness-dependent strength of nanotubular ZnO originates from nanotubular structures formed on ligaments of np-Au
A New Method for Manufacturing Process Autonomous Planning in Intelligent Manufacturing System
This paper presents a new method for autonomous computer-aided process planning (A-CAPP) in an intelligent manufacturing system, in which the related input and output of the system are discussed on the basis of comparative analysis of traditional CAPP. The crucial functional components of the A-CAPP system, such as event scheduling management, manufacturing process planning, operation process/step planning, numerical control machining program planning, process simulation and evaluation, are introduced; and the methods of process knowledge management, including process feature knowledge, manufacturing resource knowledge and process method knowledge, are discussed as well. A-CAPP applied for intelligent manufacturing system can effectively support the production line reconstruction dynamically; shorten the time of production line configuration modification in accordance with customers’ requirement change or market requirement fluctuation, and furthermore to balance the production lines load
The Combination of Hyperuricemia and Elevated High-Sensitivity C-Reactive Protein Increased the Risk of Cardiac Conduction Block
Na Li,1 Liufu Cui,1 Gary Tse,2,3 Panagiotis Korantzopoulos,4 Konstantinos P Letsas,5 George Bazoukis,6,7 Shuohua Chen,8 Nan Zhang,2 Xuemei Yang,9 Peipei Liu,10 Lili Wu,11 Gan-Xin Yan,12,13 Gregory Yoke Hong Lip,14,15 Shouling Wu,8 Tong Liu2 1Department of Rheumatology and Immunology, Kailuan General Hospital, Tangshan, Hebei Province, People’s Republic of China; 2Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China; 3School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, People’s Republic of China; 4First Department of Cardiology, University of Ioannina Medical School, Ioannina, Greece; 5Arrhythmia Unit, Laboratory of Cardiac Pacing and Electrophysiology, Onassis Cardiac Surgery Center, Athens, Greece; 6Department of Cardiology, Larnaca General Hospital, Larnaca, Cyprus; 7European University Cyprus, Medical School, Nicosia, Cyprus; 8Department of Cardiology, Kailuan General Hospital, Tangshan, Hebei Province, People’s Republic of China; 9School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei Province, People’s Republic of China; 10School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, People’s Republic of China; 11Department of Cardiology, Shanghai Songjiang District Central Hospital, Shanghai, People’s Republic of China; 12Lankenau Medical Center and Lankenau Institute for Medical Research, Wynnewood, PA, USA; 13Department of Cardiology, Fuwai Huazhong Hospital, Zhengzhou, Henan Province, People’s Republic of China; 14Liverpool Centre for Cardiovascular Sciences, University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK; 15Danish Center for Clinical Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, DenmarkCorrespondence: Tong Liu, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China, Email [email protected]; [email protected] Shouling Wu, Department of Cardiology, Kailuan General Hospital, Tangshan, Hebei Province, People’s Republic of China, Email [email protected]: This study aimed to explore the impact of a combination of hyperuricemia (HUA) and excessive high-sensitivity C-reactive protein (hs-CRP) levels on the likelihood of developing cardiac conduction block (CCB). Additionally, it sought to assess whether the influence of uric acid (UA) on CCB is mediated by hs-CRP.Methods: A prospective study was executed utilizing data from the Kailuan cohort, including 81,896 individuals initially free from CCB. The participants were categorized into four groups depending on the existence of HUA and low-grade inflammation (hs-CRP> 3 mg/L). Cox regression analysis was employed to ascertain hazard ratios (HRs) and 95% confidence intervals (CIs) for the risk of incident CCB. A mediation analysis was performed to determine if hs-CRP functioned as a mediator in the connection between UA levels and the incidence of CCB.Results: During a median observation period of 11.8 years, we identified 3160 cases of newly occurring CCB. Compared with the low UA/low CRP group, the combination of HUA and low-grade inflammation elevated the CCB risks (HR:1.56, 95% CI:1.22– 1.99), atrioventricular block (AVB) (HR:1.88, 95% CI:1.27– 2.77), and right bundle branch block (HR:1.47, 95% CI:1.02– 2.12), respectively. Mediation analysis revealed that in the HUA group, compared with the non-HUA group, the risk of CCB elevated by 14.0%, with 10.3% of the increase mediated through hs-CRP.Conclusion: HUA combined with elevated hs-CRP increased the risk of CCB, especially AVB. The connection between UA and the CCB risk was partly mediated by hs-CRP. Keywords: hyperuricemia, inflammation, cardiac conduction block, combined exposure, risk factors, mediatio
Facile synthesis of precious-metal single-site catalysts using organic solvents
Single-site catalysts can demonstrate high activity and selectivity in many catalytic reactions. The synthesis of these materials by impregnation from strongly oxidizing aqueous solutions or pH-controlled deposition often leads to low metal loadings or a range of metal species. Here, we demonstrate that simple impregnation of the metal precursors onto activated carbon from a low-boiling-point, low-polarity solvent, such as acetone, results in catalysts with an atomic dispersion of cationic metal species. We show the generality of this method by producing single-site Au, Pd, Ru and Pt catalysts supported on carbon in a facile manner. Single-site Au/C catalysts have previously been validated commercially to produce vinyl chloride, and here we show that this facile synthesis method can produce effective catalysts for acetylene hydrochlorination in the absence of the highly oxidizing acidic solvents previously used. [Figure not available: see fulltext.].</p
CD8+ T Cells Mediate the Athero-Protective Effect of Immunization with an ApoB-100 Peptide
Immunization of hypercholesterolemic mice with selected apoB-100 peptide antigens reduces atherosclerosis but the precise immune mediators of athero-protection remain unclear. In this study we show that immunization of apoE (-/-) mice with p210, a 20 amino acid apoB-100 related peptide, reduced aortic atherosclerosis compared with PBS or adjuvant/carrier controls. Immunization with p210 activated CD8+ T cells, reduced dendritic cells (DC) at the site of immunization and within the plaque with an associated reduction in plaque macrophage immunoreactivity. Adoptive transfer of CD8+ T cells from p210 immunized mice recapitulated the athero-protective effect of p210 immunization in naïve, non-immunized mice. CD8+ T cells from p210 immunized mice developed a preferentially higher cytolytic response against p210-loaded dendritic cells in vitro. Although p210 immunization profoundly modulated DCs and cellular immune responses, it did not alter the efficacy of subsequent T cell dependent or independent immune response to other irrelevant antigens. Our data define, for the first time, a role for CD8+ T cells in mediating the athero-protective effects of apoB-100 related peptide immunization in apoE (-/-) mice
Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay
The decay channel
is studied using a sample of events collected
by the BESIII experiment at BEPCII. A strong enhancement at threshold is
observed in the invariant mass spectrum. The enhancement can be fit
with an -wave Breit-Wigner resonance function with a resulting peak mass of
and a
narrow width that is at the 90% confidence level.
These results are consistent with published BESII results. These mass and width
values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics
The Heart Is an Early Target of Anthrax Lethal Toxin in Mice: A Protective Role for Neuronal Nitric Oxide Synthase (nNOS)
Anthrax lethal toxin (LT) induces vascular insufficiency in experimental animals through unknown mechanisms. In this study, we show that neuronal nitric oxide synthase (nNOS) deficiency in mice causes strikingly increased sensitivity to LT, while deficiencies in the two other NOS enzymes (iNOS and eNOS) have no effect on LT-mediated mortality. The increased sensitivity of nNOS−/− mice was independent of macrophage sensitivity to toxin, or cytokine responses, and could be replicated in nNOS-sufficient wild-type (WT) mice through pharmacological inhibition of the enzyme with 7-nitroindazole. Histopathological analyses showed that LT induced architectural changes in heart morphology of nNOS−/− mice, with rapid appearance of novel inter-fiber spaces but no associated apoptosis of cardiomyocytes. LT-treated WT mice had no histopathology observed at the light microscopy level. Electron microscopic analyses of LT-treated mice, however, revealed striking pathological changes in the hearts of both nNOS−/− and WT mice, varying only in severity and timing. Endothelial/capillary necrosis and degeneration, inter-myocyte edema, myofilament and mitochondrial degeneration, and altered sarcoplasmic reticulum cisternae were observed in both LT-treated WT and nNOS−/− mice. Furthermore, multiple biomarkers of cardiac injury (myoglobin, cardiac troponin-I, and heart fatty acid binding protein) were elevated in LT-treated mice very rapidly (by 6 h after LT injection) and reached concentrations rarely reported in mice. Cardiac protective nitrite therapy and allopurinol therapy did not have beneficial effects in LT-treated mice. Surprisingly, the potent nitric oxide scavenger, carboxy-PTIO, showed some protective effect against LT. Echocardiography on LT-treated mice indicated an average reduction in ejection fraction following LT treatment in both nNOS−/− and WT mice, indicative of decreased contractile function in the heart. We report the heart as an early target of LT in mice and discuss a protective role for nNOS against LT-mediated cardiac damage
- …